CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble
- URL: http://arxiv.org/abs/2409.10643v1
- Date: Mon, 16 Sep 2024 18:19:19 GMT
- Title: CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble
- Authors: Jonathan Rosenthal, Shanchao Liang, Kevin Zhang, Lin Tan,
- Abstract summary: We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries.
Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets.
- Score: 4.029642441688877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy [65.80757820884476]
We expose a critical yet underexplored vulnerability in the deployment of unlearning systems.
We present a threat model where an attacker can degrade model accuracy by submitting adversarial unlearning requests for data not present in the training set.
We evaluate various verification mechanisms to detect the legitimacy of unlearning requests and reveal the challenges in verification.
arXiv Detail & Related papers (2024-10-12T16:47:04Z) - MisGUIDE : Defense Against Data-Free Deep Learning Model Extraction [0.8437187555622164]
"MisGUIDE" is a two-step defense framework for Deep Learning models that disrupts the adversarial sample generation process.
The aim of the proposed defense method is to reduce the accuracy of the cloned model while maintaining accuracy on authentic queries.
arXiv Detail & Related papers (2024-03-27T13:59:21Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Army of Thieves: Enhancing Black-Box Model Extraction via Ensemble based
sample selection [10.513955887214497]
In Model Stealing Attacks (MSA), a machine learning model is queried repeatedly to build a labelled dataset.
In this work, we explore the usage of an ensemble of deep learning models as our thief model.
We achieve a 21% higher adversarial sample transferability than previous work for models trained on the CIFAR-10 dataset.
arXiv Detail & Related papers (2023-11-08T10:31:29Z) - Data-Free Model Extraction Attacks in the Context of Object Detection [0.6719751155411076]
A significant number of machine learning models are vulnerable to model extraction attacks.
We propose an adversary black box attack extending to a regression problem for predicting bounding box coordinates in object detection.
We find that the proposed model extraction method achieves significant results by using reasonable queries.
arXiv Detail & Related papers (2023-08-09T06:23:54Z) - Zero-Shot Machine Unlearning [6.884272840652062]
Modern privacy regulations grant citizens the right to be forgotten by products, services and companies.
No data related to the training process or training samples may be accessible for the unlearning purpose.
We propose two novel solutions for zero-shot machine unlearning based on (a) error minimizing-maximizing noise and (b) gated knowledge transfer.
arXiv Detail & Related papers (2022-01-14T19:16:09Z) - SSSE: Efficiently Erasing Samples from Trained Machine Learning Models [103.43466657962242]
We propose an efficient and effective algorithm, SSSE, for samples erasure.
In certain cases SSSE can erase samples almost as well as the optimal, yet impractical, gold standard of training a new model from scratch with only the permitted data.
arXiv Detail & Related papers (2021-07-08T14:17:24Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Data-Free Model Extraction [16.007030173299984]
Current model extraction attacks assume that the adversary has access to a surrogate dataset with characteristics similar to the proprietary data used to train the victim model.
We propose data-free model extraction methods that do not require a surrogate dataset.
We find that the proposed data-free model extraction approach achieves high-accuracy with reasonable query complexity.
arXiv Detail & Related papers (2020-11-30T13:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.