Overcoming the Standard Quantum Limit with Electro-Optomechanical Hybrid System for Enhanced Force Sensing
- URL: http://arxiv.org/abs/2409.10694v1
- Date: Mon, 16 Sep 2024 19:48:23 GMT
- Title: Overcoming the Standard Quantum Limit with Electro-Optomechanical Hybrid System for Enhanced Force Sensing
- Authors: Alolika Roy, Amarendra K. Sarma,
- Abstract summary: We investigate the reduction of measurement-added noise in force sensing by analyzing its power spectral density (PSD)
We derive the conditions necessary for complete cancellation of back-action force, thereby enhancing force sensitivity.
The removal of back-action noise, along with the reduction of shot noise, improves force detection capabilities, thereby surpassing the standard quantum limit associated with weak force detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the reduction of measurement-added noise in force sensing by analyzing its power spectral density (PSD) within a hybrid optomechanical system. The setup comprises of an optomechanical cavity equipped with a movable mirror which acts as the mechanical oscillator, a stationary semi-transparent mirror, a superconducting qubit, and an optical parametric amplifier (OPA). By utilizing the concept of coherent quantum noise cancellation (CQNC), we derive the conditions necessary for complete cancellation of back-action force, thereby enhancing force sensitivity. Furthermore, with the gradual increase in the OPA pump gains, we suppress the sensitivity beyond the standard quantum limit (SQL) at a lower value of laser power. The removal of back-action noise, along with the reduction of shot noise, improves force detection capabilities, thereby surpassing the standard quantum limit associated with weak force detection.
Related papers
- Weak force sensing based on optical parametric amplification in a cavity optomechanical system coupled in series with two oscillators [3.1592042828921505]
We investigate a weak force sensing scheme that combines a degenerate optical parametric amplifier (OPA) and an auxiliary mechanical oscillator into a cavity optomechanical system to reduce quantum noise.
The noise reduction mechanism of OPA is to reduce the fluctuation of photon number and enhance the squeezing of the cavity field.
arXiv Detail & Related papers (2024-08-03T11:43:55Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Combining quantum noise reduction resources: a practical approach [0.0]
We provide the theoretical limits to noise reduction while combining quantum enhanced readout techniques for optomechanical sensors.
We demonstrate that backaction evasion through QND techniques dramatically reduces the technical challenges presented when using squeezed light for broadband force detection.
arXiv Detail & Related papers (2022-11-26T02:39:20Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Enhanced weak force sensing based on atom-based coherent quantum noise
cancellation in a hybrid cavity optomechanical system [0.0]
We theoretically investigate the weak force-sensing based on coherent quantum noise cancellation (CQNC) scheme in a hybrid cavity optomechanical system.
In our proposed system the back action noise can be completely eliminated at all frequencies as well as through the proper choice of the OPA parameters noise spectral density can be also reduced at lower frequencies.
arXiv Detail & Related papers (2022-03-03T12:33:08Z) - Enhanced weak force sensing through atom-based coherent noise
cancellation in a hybrid cavity optomechanical system [0.0]
We investigate weak force-sensing based on coherent quantum noise cancellation in a nonlinear hybrid optomechanical system.
The optomechanical cavity contains a moveable mechanical mirror, a fixed semitransparent mirror, an ensemble of ultracold atoms, and an optical parametric amplifier.
arXiv Detail & Related papers (2022-01-26T08:26:12Z) - Homodyne coherent quantum noise cancellation in a hybrid optomechanical
force sensor [0.0]
We propose an experimentally viable scheme to enhance the sensitivity of force detection in a hybrid optomechanical setup assisted by squeezed vacuum injection.
We show here that the adoption of variational homodyne readout enables us to enhance this noise cancellation up to $40 mathrmdB$ compared to the standard case.
We show that at nonzero cavity detuning, the signal response can be amplified at a level three to five times larger than that in the standard case.
arXiv Detail & Related papers (2022-01-06T14:07:27Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.