Weak force sensing based on optical parametric amplification in a cavity optomechanical system coupled in series with two oscillators
- URL: http://arxiv.org/abs/2408.01757v2
- Date: Wed, 7 Aug 2024 08:35:33 GMT
- Title: Weak force sensing based on optical parametric amplification in a cavity optomechanical system coupled in series with two oscillators
- Authors: Zheng Liu, Yu-qiang Liu, Yi-jia Yang, Chang-shui Yu,
- Abstract summary: We investigate a weak force sensing scheme that combines a degenerate optical parametric amplifier (OPA) and an auxiliary mechanical oscillator into a cavity optomechanical system to reduce quantum noise.
The noise reduction mechanism of OPA is to reduce the fluctuation of photon number and enhance the squeezing of the cavity field.
- Score: 3.1592042828921505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm weak force sensing, an important issue is to suppress fundamental noise (quantum noise and thermal noise), as they limit the accuracy of force measurement. In this paper, we investigate a weak force sensing scheme that combines a degenerate optical parametric amplifier (OPA) and an auxiliary mechanical oscillator into a cavity optomechanical system to reduce quantum noise. We demonstrate that the noise reduction of two coupled oscillators depends on their norm mode splitting. and provide a classic analogy and quantum perspective for further clarification. Besides, the noise reduction mechanism of OPA is to reduce the fluctuation of photon number and enhance the squeezing of the cavity field. We propose a specific design aimed at enhancing the joint effect of both, beyond what can be achieved using OPA alone or two series coupled oscillators. This scheme provides a new perspective for deeper understanding of cavity field squeezing and auxiliary oscillator in force sensing.
Related papers
- Overcoming the Standard Quantum Limit with Electro-Optomechanical Hybrid System for Enhanced Force Sensing [0.0]
We investigate the reduction of measurement-added noise in force sensing by analyzing its power spectral density (PSD)
We derive the conditions necessary for complete cancellation of back-action force, thereby enhancing force sensitivity.
The removal of back-action noise, along with the reduction of shot noise, improves force detection capabilities, thereby surpassing the standard quantum limit associated with weak force detection.
arXiv Detail & Related papers (2024-09-16T19:48:23Z) - Tripartite quantum entanglement with squeezed optomechanics [3.1938039621723724]
We propose how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system.
The advantages of this system are twofold: (i) one can effectively regulate the light-mirror interactions by introducing a squeezed intracavity mode via the OPA; (ii) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely.
arXiv Detail & Related papers (2023-11-20T02:00:17Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Two-photon driven Kerr quantum oscillator with multiple spectral
degeneracies [0.0]
We show that an extra control parameter, the detuning of the two-photon drive, plays a crucial role in the properties of the defined qubit.
We show that the additional degeneracies allow us to perform fast and high-fidelity gates while preserving a strong suppression of bit-flip errors.
arXiv Detail & Related papers (2022-11-07T16:59:43Z) - Directional Josephson traveling-wave parametric amplifier via
non-Hermitian topology [58.720142291102135]
Low-noise microwave amplification is crucial for detecting weak signals in quantum technologies and radio astronomy.
Current amplifiers do not satisfy all these requirements, severely limiting the scalability of superconducting quantum devices.
Here, we demonstrate the feasibility of building a near-ideal quantum amplifier using a homogeneous Josephson junction array and the non-trivial topology of its dynamics.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - Enhanced weak force sensing based on atom-based coherent quantum noise
cancellation in a hybrid cavity optomechanical system [0.0]
We theoretically investigate the weak force-sensing based on coherent quantum noise cancellation (CQNC) scheme in a hybrid cavity optomechanical system.
In our proposed system the back action noise can be completely eliminated at all frequencies as well as through the proper choice of the OPA parameters noise spectral density can be also reduced at lower frequencies.
arXiv Detail & Related papers (2022-03-03T12:33:08Z) - Enhanced weak force sensing through atom-based coherent noise
cancellation in a hybrid cavity optomechanical system [0.0]
We investigate weak force-sensing based on coherent quantum noise cancellation in a nonlinear hybrid optomechanical system.
The optomechanical cavity contains a moveable mechanical mirror, a fixed semitransparent mirror, an ensemble of ultracold atoms, and an optical parametric amplifier.
arXiv Detail & Related papers (2022-01-26T08:26:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.