論文の概要: NaviQAte: Functionality-Guided Web Application Navigation
- arxiv url: http://arxiv.org/abs/2409.10741v1
- Date: Mon, 16 Sep 2024 21:18:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 18:30:27.642077
- Title: NaviQAte: Functionality-Guided Web Application Navigation
- Title(参考訳): NaviQAte: 関数型Webアプリケーションナビゲーション
- Authors: Mobina Shahbandeh, Parsa Alian, Noor Nashid, Ali Mesbah,
- Abstract要約: NaviQAteは、Webアプリケーションの探索を質問と回答のタスクとして捉え、詳細なパラメータを必要とせずに機能のためのアクションシーケンスを生成する。
我々の3段階のアプローチでは、GPT-4oのような先進的な言語モデルを用いて複雑な意思決定を行い、GPT-4o miniのようなコスト効率のよいモデルを用いる。
- 参考スコア(独自算出の注目度): 6.0759036120654315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end web testing is challenging due to the need to explore diverse web application functionalities. Current state-of-the-art methods, such as WebCanvas, are not designed for broad functionality exploration; they rely on specific, detailed task descriptions, limiting their adaptability in dynamic web environments. We introduce NaviQAte, which frames web application exploration as a question-and-answer task, generating action sequences for functionalities without requiring detailed parameters. Our three-phase approach utilizes advanced large language models like GPT-4o for complex decision-making and cost-effective models, such as GPT-4o mini, for simpler tasks. NaviQAte focuses on functionality-guided web application navigation, integrating multi-modal inputs such as text and images to enhance contextual understanding. Evaluations on the Mind2Web-Live and Mind2Web-Live-Abstracted datasets show that NaviQAte achieves a 44.23% success rate in user task navigation and a 38.46% success rate in functionality navigation, representing a 15% and 33% improvement over WebCanvas. These results underscore the effectiveness of our approach in advancing automated web application testing.
- Abstract(参考訳): 多様なWebアプリケーションの機能を調べる必要があるため、エンドツーエンドのWebテストは難しい。
WebCanvasのような現在の最先端のメソッドは、幅広い機能探索のために設計されていない。
NaviQAteは、Webアプリケーションの探索を質問と回答のタスクとしてフレーム化し、詳細なパラメータを必要とせずに機能のためのアクションシーケンスを生成する。
我々の3段階のアプローチでは、GPT-4oのような先進的な言語モデルを用いて複雑な意思決定を行い、GPT-4o miniのようなコスト効率のよいモデルを用いる。
NaviQAteは、機能指向のWebアプリケーションナビゲーションに焦点を当て、テキストや画像などのマルチモーダル入力を統合し、コンテキスト理解を強化する。
Mind2Web-LiveとMind2Web-Live-Abstractedデータセットの評価によると、NaviQAteはユーザタスクナビゲーションで44.23%、機能ナビゲーションで38.46%、WebCanvasで15%と33%改善している。
これらの結果は、自動Webアプリケーションテストの進歩における我々のアプローチの有効性を裏付けるものである。
関連論文リスト
- Infogent: An Agent-Based Framework for Web Information Aggregation [59.67710556177564]
我々はWeb情報集約のための新しいフレームワークInfogentを紹介する。
異なる情報アクセス設定の実験では、Infogentが既存のSOTAマルチエージェント検索フレームワークを7%上回った。
論文 参考訳(メタデータ) (2024-10-24T18:01:28Z) - Steward: Natural Language Web Automation [19.301371856154965]
大規模言語モデル(LLM)は、AIアシスタントの基盤として機能する優れた能力を示している。
我々は、低コストでスケーラブルでエンドツーエンドなWebインタラクション自動化ソリューションとして機能するように設計された、新しいLLMベースのWeb自動化ツールであるStewardを紹介します。
本稿では,状態表現,アクションシーケンス選択,システム応答性,タスク完了の検出,キャッシュ実装など,さまざまな設計と実装の課題について論じる。
論文 参考訳(メタデータ) (2024-09-23T18:06:32Z) - DISCO: Embodied Navigation and Interaction via Differentiable Scene Semantics and Dual-level Control [53.80518003412016]
人間の命令によって多様なタスクに熟練した汎用的なインテリジェントホームアシストエージェントを構築することは、AI研究の長期的青写真である。
本研究では,具体的エージェントに対する原始的移動操作,すなわち指示された動詞と名詞のペアに基づいて,ナビゲートと対話の仕方について検討する。
本研究では、文脈化されたシーンモデリングと効率的な制御における非自明な進歩を特徴とするdisCOを提案する。
論文 参考訳(メタデータ) (2024-07-20T05:39:28Z) - AutoWebGLM: A Large Language Model-based Web Navigating Agent [33.55199326570078]
オープンなAutoWebGLMをChatGLM3-6Bに基づいて開発する。
人間のブラウジングパターンにインスパイアされた我々は、まず、Webページを表現するためのHTML単純化アルゴリズムを設計する。
次に,カリキュラム学習のためのWebブラウジングデータを構築するために,ハイブリッドなヒューマンAI手法を用いる。
論文 参考訳(メタデータ) (2024-04-04T17:58:40Z) - AllTogether: Investigating the Efficacy of Spliced Prompt for Web
Navigation using Large Language Models [2.234037966956278]
タスクコンテキスト表現を強化する標準化されたプロンプトテンプレートであるAllTogetherを紹介する。
我々は,オープンソースのLlama-2とAPIアクセス可能なGPTモデルに基づいて,素早い学習と指導の微調整により,このアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2023-10-20T11:10:14Z) - Multimodal Web Navigation with Instruction-Finetuned Foundation Models [99.14209521903854]
視覚言語基礎モデルを用いたWebエージェントのためのデータ駆動オフライントレーニングについて検討する。
本稿では,WebページのスクリーンショットとHTMLページの両方を観察する命令追従型マルチモーダルエージェントWebGUMを提案する。
このレシピは,マルチモーダル認識,HTML理解,マルチステップ推論といったエージェントの能力を向上させることを実証的に実証する。
論文 参考訳(メタデータ) (2023-05-19T17:44:34Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Towards Versatile Embodied Navigation [120.73460380993305]
ウィーンは多機能なエンボディナビゲーションエージェントであり、同時に4つのナビゲーションタスクを1つのモデルで実行することを学ぶ。
視覚的なナビゲーションタスクを個別に学習するのに対し、エージェントは複雑さを減らして同等またはそれ以上の性能を達成することを実証的に実証した。
論文 参考訳(メタデータ) (2022-10-30T11:53:49Z) - Zero Experience Required: Plug & Play Modular Transfer Learning for
Semantic Visual Navigation [97.17517060585875]
新たなモジュール移動学習モデルを用いて視覚ナビゲーションに統一的な手法を提案する。
我々のモデルは、1つのソースタスクから経験を効果的に活用し、複数のターゲットタスクに適用することができる。
我々のアプローチはより速く学習し、より良く一般化し、大きなマージンでSoTAモデルを上回っます。
論文 参考訳(メタデータ) (2022-02-05T00:07:21Z) - MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation [23.877609358505268]
最近の研究は、地図のようなメモリが長距離ナビゲーションタスクに有用であることを示している。
本稿では,実環境において,エピソード特有のオブジェクト列へのナビゲーションを必要とするマルチオンタスクを提案する。
様々なエージェントモデルがナビゲーションタスクの複雑度をまたいでどのように振る舞うかを検討する。
論文 参考訳(メタデータ) (2020-12-07T18:42:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。