Are Deep Learning Models Robust to Partial Object Occlusion in Visual Recognition Tasks?
- URL: http://arxiv.org/abs/2409.10775v1
- Date: Mon, 16 Sep 2024 23:21:22 GMT
- Title: Are Deep Learning Models Robust to Partial Object Occlusion in Visual Recognition Tasks?
- Authors: Kaleb Kassaw, Francesco Luzi, Leslie M. Collins, Jordan M. Malof,
- Abstract summary: Image classification models, including convolutional neural networks (CNNs), perform well on a variety of classification tasks but struggle under partial occlusion.
We contribute the Image Recognition Under Occlusion (IRUO) dataset, based on the recently developed Occluded Video Instance (IRUO) dataset (arXiv:2102.01558)
We find that modern CNN-based models show improved recognition accuracy on occluded images compared to earlier CNN-based models, and ViT-based models are more accurate than CNN-based models on occluded images.
- Score: 4.9260675787714
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Image classification models, including convolutional neural networks (CNNs), perform well on a variety of classification tasks but struggle under conditions of partial occlusion, i.e., conditions in which objects are partially covered from the view of a camera. Methods to improve performance under occlusion, including data augmentation, part-based clustering, and more inherently robust architectures, including Vision Transformer (ViT) models, have, to some extent, been evaluated on their ability to classify objects under partial occlusion. However, evaluations of these methods have largely relied on images containing artificial occlusion, which are typically computer-generated and therefore inexpensive to label. Additionally, methods are rarely compared against each other, and many methods are compared against early, now outdated, deep learning models. We contribute the Image Recognition Under Occlusion (IRUO) dataset, based on the recently developed Occluded Video Instance Segmentation (OVIS) dataset (arXiv:2102.01558). IRUO utilizes real-world and artificially occluded images to test and benchmark leading methods' robustness to partial occlusion in visual recognition tasks. In addition, we contribute the design and results of a human study using images from IRUO that evaluates human classification performance at multiple levels and types of occlusion. We find that modern CNN-based models show improved recognition accuracy on occluded images compared to earlier CNN-based models, and ViT-based models are more accurate than CNN-based models on occluded images, performing only modestly worse than human accuracy. We also find that certain types of occlusion, including diffuse occlusion, where relevant objects are seen through "holes" in occluders such as fences and leaves, can greatly reduce the accuracy of deep recognition models as compared to humans, especially those with CNN backbones.
Related papers
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - Now You See Me: Robust approach to Partial Occlusions [0.15229257192293202]
Occlusions of objects is one of the indispensable problems in Computer vision.
This paper introduces our own synthetically created dataset by utilising Stanford Car dataset.
We conduct a comprehensive analysis using various state of the art CNN models such as VGG-19, ResNet 50/101, GoogleNet, DenseNet 121.
arXiv Detail & Related papers (2023-04-24T00:31:49Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Contemplating real-world object classification [53.10151901863263]
We reanalyze the ObjectNet dataset recently proposed by Barbu et al. containing objects in daily life situations.
We find that applying deep models to the isolated objects, rather than the entire scene as is done in the original paper, results in around 20-30% performance improvement.
arXiv Detail & Related papers (2021-03-08T23:29:59Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - A Study for Universal Adversarial Attacks on Texture Recognition [19.79803434998116]
We show that there exist small image-agnostic/univesal perturbations that can fool the deep learning models with more than 80% of testing fooling rates on all tested texture datasets.
The computed perturbations using various attack methods on the tested datasets are generally quasi-imperceptible, containing structured patterns with low, middle and high frequency components.
arXiv Detail & Related papers (2020-10-04T08:11:11Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
This paper builds on previous ideas to cope with the increasing demand for interpretable, robust, and transparent models.
The proposed Eigen-CAM computes and visualizes the principle components of the learned features/representations from the convolutional layers.
arXiv Detail & Related papers (2020-08-01T17:14:13Z) - Compositional Convolutional Neural Networks: A Robust and Interpretable
Model for Object Recognition under Occlusion [21.737411464598797]
We show that black-box deep convolutional neural networks (DCNNs) have only limited robustness to partial occlusion.
We overcome these limitations by unifying DCNNs with part-based models into Compositional Convolutional Neural Networks (CompositionalNets)
Our experiments show that CompositionalNets improve by a large margin over their non-compositional counterparts at classifying and detecting partially occluded objects.
arXiv Detail & Related papers (2020-06-28T08:18:19Z) - Compositional Convolutional Neural Networks: A Deep Architecture with
Innate Robustness to Partial Occlusion [18.276428975330813]
Recent findings show that deep convolutional neural networks (DCNNs) do not generalize well under partial occlusion.
Inspired by the success of compositional models at classifying partially occluded objects, we propose to integrate compositional models and DCNNs into a unified deep model.
We conduct classification experiments on artificially occluded images as well as real images of partially occluded objects from the MS-COCO dataset.
Our proposed model outperforms standard DCNNs by a large margin at classifying partially occluded objects, even when it has not been exposed to occluded objects during training.
arXiv Detail & Related papers (2020-03-10T01:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.