Detecting and protecting entanglement through nonlocality, variational entanglement witness, and nonlocal measurements
- URL: http://arxiv.org/abs/2409.10852v2
- Date: Mon, 16 Dec 2024 00:38:53 GMT
- Title: Detecting and protecting entanglement through nonlocality, variational entanglement witness, and nonlocal measurements
- Authors: Haruki Matsunaga, Le Bin Ho,
- Abstract summary: We propose an innovative method to enhance the detection and protection of quantum entanglement.
Our approach enhances the reliability of entanglement detection while maintaining the entanglement of quantum states.
- Score: 0.0
- License:
- Abstract: We propose an innovative method to enhance the detection and protection of quantum entanglement, a cornerstone of quantum mechanics with applications in computing, communication, and beyond. While entanglement can be represented through nonlocal correlations detectable by the Clauser-Horne-Shimony-Holt (CHSH) inequality, this method does not fully capture all entangled states. To address this limitation, we introduce a variational entanglement witness (VEW) that optimizes the probabilities of detection and improves the efficiency of distinguishing between separable and entangled states. Additionally, we propose a novel nonlocal measurement framework that enables the assessment of both CHSH inequalities and the VEW while preserving the entanglement. Our approach enhances the reliability of entanglement detection while maintaining the entanglement of quantum states, offering significant advancements for quantum technologies.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Robust self-testing of the $m-$partite maximally entangled state and observables [0.0]
We propose a simple and efficient self-testing protocol that certifies the state and observables based on the optimal quantum violation of the Svetlichny inequality.
Our method leverages an elegant sum-of-squares approach to derive the optimal quantum value of the Svetlichny functional, devoid of assuming the dimension of the quantum system.
arXiv Detail & Related papers (2024-08-20T11:03:37Z) - Disturbance Evaluation Circuit in Quantum Measurement [0.0]
We propose a novel evaluation method for the quantum root-mean-square (QRMS) disturbance.
We compare its performance with the existing approaches, known as the three-state method (TSM) and the weak measurement method (WMM)
arXiv Detail & Related papers (2024-05-19T04:55:39Z) - Controlling measurement induced phase transitions with tunable detector coupling [44.99833362998488]
We study the evolution of a quantum many-body system driven by two competing measurements.
We employ a positive operator-valued measurement with variable coupling between the system and detector.
arXiv Detail & Related papers (2024-04-11T17:02:58Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Unveiling quantum steering by quantum-classical uncertainty complementarity [0.0]
We introduce a novel complementarity relation between system's quantum and classical uncertainties.
We demonstrate a superior steering detection efficiency compared to an entropic uncertainty relation.
arXiv Detail & Related papers (2023-12-02T07:49:20Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Certifying activation of quantum correlations with finite data [0.0]
Quantum theory allows for different classes of correlations, such as entanglement, steerability or Bell-nonlocality.
We show how our methods can be used to analyse the activation of quantum correlations by local filtering, specifically for Bell-nonlocality and quantum steerability.
arXiv Detail & Related papers (2023-05-05T18:00:00Z) - Demonstration of Entanglement-Enhanced Covert Sensing [3.516093069612194]
We present the theory and experiment for entanglement-enhanced covert sensing.
We show that entanglement offers a performance boost in estimating the imparted phase by a probed object.
Our work is expected to create ample opportunities for quantum information processing at unprecedented security and performance levels.
arXiv Detail & Related papers (2022-05-25T16:20:34Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.