Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox
- URL: http://arxiv.org/abs/2009.08440v2
- Date: Tue, 12 Jul 2022 13:47:26 GMT
- Title: Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox
- Authors: Benjamin Yadin, Matteo Fadel, Manuel Gessner
- Abstract summary: The Einstein-Podolsky-Rosen paradox plays a fundamental role in our understanding of quantum mechanics.
It is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the uncertainty principle.
This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our
understanding of quantum mechanics, and is associated with the possibility of
predicting the results of non-commuting measurements with a precision that
seems to violate the uncertainty principle. This apparent contradiction to
complementarity is made possible by nonclassical correlations stronger than
entanglement, called steering. Quantum information recognises steering as an
essential resource for a number of tasks but, contrary to entanglement, its
role for metrology has so far remained unclear. Here, we formulate the EPR
paradox in the framework of quantum metrology, showing that it enables the
precise estimation of a local phase shift and of its generating observable.
Employing a stricter formulation of quantum complementarity, we derive a
criterion based on the quantum Fisher information that detects steering in a
larger class of states than well-known uncertainty-based criteria. Our result
identifies useful steering for quantum-enhanced precision measurements and
allows one to uncover steering of non-Gaussian states in state-of-the-art
experiments.
Related papers
- Observing tight triple uncertainty relations in two-qubit systems [21.034105385856765]
We demonstrate the uncertainty relations in two-qubit systems involving three physical components with the tight constant $2/sqrt3$.
Our results provide a new insight into understanding the uncertainty relations with multiple observables and may motivate more innovative applications in quantum information science.
arXiv Detail & Related papers (2024-10-08T11:24:24Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Entropic uncertainty relations and entanglement detection from quantum
designs [5.928675196115795]
We investigate entropic uncertainty relations and entanglement detection with an emphasis on quantum measurements with design structures.
We derive improved R'enyi entropic uncertainty relations for design-structured measurements.
We obtain criteria for detecting multi-partite entanglement with design-structured measurements.
arXiv Detail & Related papers (2023-12-15T13:11:00Z) - Unveiling quantum steering by quantum-classical uncertainty complementarity [0.0]
We introduce a novel complementarity relation between system's quantum and classical uncertainties.
We demonstrate a superior steering detection efficiency compared to an entropic uncertainty relation.
arXiv Detail & Related papers (2023-12-02T07:49:20Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Certification of non-Gaussian Einstein-Podolsky-Rosen Steering [2.9290107337630613]
We present an efficient non-Gaussian steering criterion based on the high-order observables.
We propose a feasible scheme to create multi-component cat states with tunable size.
Our work reveals the fundamental characteristics of non-Gaussianity and quantum correlations.
arXiv Detail & Related papers (2023-08-26T12:57:22Z) - Quantum Discord Witness with Uncharacterized Devices [18.751513188036334]
We propose a new approach using uncharacterized measurements to witness quantum discord of an unknown bipartite state within arbitrary dimension system.
The feature of high robustness against device imperfections, such as loss-tolerance and error-tolerance, shows our method is experimentally feasible.
arXiv Detail & Related papers (2023-03-20T14:51:53Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Improved tripartite uncertainty relation with quantum memory [5.43508370077166]
Uncertainty principle is a striking and fundamental feature in quantum mechanics.
In quantum information theory, this uncertainty principle is popularly formulized in terms of entropy.
We present an improvement of tripartite quantum-memory-assisted entropic uncertainty relation.
arXiv Detail & Related papers (2020-04-09T03:54:51Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - An optimal measurement strategy to beat the quantum uncertainty in
correlated system [0.6091702876917281]
Uncertainty principle undermines the precise measurement of incompatible observables.
Entanglement, another unique feature of quantum physics, was found may help to reduce the quantum uncertainty.
arXiv Detail & Related papers (2020-02-23T05:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.