Investigating Context-Faithfulness in Large Language Models: The Roles of Memory Strength and Evidence Style
- URL: http://arxiv.org/abs/2409.10955v1
- Date: Tue, 17 Sep 2024 07:44:06 GMT
- Title: Investigating Context-Faithfulness in Large Language Models: The Roles of Memory Strength and Evidence Style
- Authors: Yuepei Li, Kang Zhou, Qiao Qiao, Bach Nguyen, Qing Wang, Qi Li,
- Abstract summary: We investigate the impact of memory strength and evidence presentation on Large Language Models' receptiveness to external evidence.
For questions with high memory strength, LLMs are more likely to rely on internal memory, particularly for larger LLMs such as GPT-4.
- Score: 13.968658352075334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) improves Large Language Models (LLMs) by incorporating external information into the response generation process. However, how context-faithful LLMs are and what factors influence LLMs' context-faithfulness remain largely unexplored. In this study, we investigate the impact of memory strength and evidence presentation on LLMs' receptiveness to external evidence. We introduce a method to quantify the memory strength of LLMs by measuring the divergence in LLMs' responses to different paraphrases of the same question, which is not considered by previous works. We also generate evidence in various styles to evaluate the effects of evidence in different styles. Two datasets are used for evaluation: Natural Questions (NQ) with popular questions and popQA featuring long-tail questions. Our results show that for questions with high memory strength, LLMs are more likely to rely on internal memory, particularly for larger LLMs such as GPT-4. On the other hand, presenting paraphrased evidence significantly increases LLMs' receptiveness compared to simple repetition or adding details.
Related papers
- Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Understanding Memorisation in LLMs: Dynamics, Influencing Factors, and Implications [14.818820873377303]
We study whether and to what extent large language models (LLMs) have memorised training data.
We create an experimental framework that is based on repeatedly exposing LLMs to random strings.
We identify factors that make some strings easier to memorise than others, and we identify the role of local prefixes and global context in memorisation.
arXiv Detail & Related papers (2024-07-27T14:00:21Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - LLM In-Context Recall is Prompt Dependent [0.0]
A model's ability to do this significantly influences its practical efficacy and dependability in real-world applications.
This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data.
arXiv Detail & Related papers (2024-04-13T01:13:59Z) - I Learn Better If You Speak My Language: Understanding the Superior Performance of Fine-Tuning Large Language Models with LLM-Generated Responses [23.053791342294268]
fine-tuning a large language model (LLM) with responses generated by a LLM often yields better results than using responses generated by humans, particularly in reasoning tasks.
Training with LLM-generated responses not only enhances performance but also helps maintain the model's capabilities in other reasoning tasks after fine-tuning on a specific task.
arXiv Detail & Related papers (2024-02-17T05:05:31Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
We focus on long-form question answering (LFQA) because it has several practical and impactful applications.
We propose a question-generation method from abstractive summaries and show that generating follow-up questions from summaries of long documents can create a challenging setting.
arXiv Detail & Related papers (2023-09-15T07:22:56Z) - Investigating the Factual Knowledge Boundary of Large Language Models
with Retrieval Augmentation [91.30946119104111]
We show that large language models (LLMs) possess unwavering confidence in their capabilities to respond to questions.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We also find that LLMs have a propensity to rely on the provided retrieval results when formulating answers.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Adaptive Chameleon or Stubborn Sloth: Revealing the Behavior of Large
Language Models in Knowledge Conflicts [21.34852490049787]
We present the first comprehensive and controlled investigation into the behavior of large language models (LLMs) when encountering knowledge conflicts.
We find that LLMs can be highly receptive to external evidence even when that conflicts with their parametric memory.
On the other hand, LLMs also demonstrate a strong confirmation bias when the external evidence contains some information consistent with their parametric memory.
arXiv Detail & Related papers (2023-05-22T17:57:41Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.