論文の概要: GEIC: Universal and Multilingual Named Entity Recognition with Large Language Models
- arxiv url: http://arxiv.org/abs/2409.11022v2
- Date: Wed, 18 Sep 2024 10:05:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-19 12:04:00.615403
- Title: GEIC: Universal and Multilingual Named Entity Recognition with Large Language Models
- Title(参考訳): GEIC:大規模言語モデルを用いたユニバーサルおよび多言語名付きエンティティ認識
- Authors: Hanjun Luo, Yingbin Jin, Xuecheng Liu, Tong Shang, Ruizhe Chen, Zuozhu Liu,
- Abstract要約: ジェネレーションベース抽出とテキスト内分類(GEIC)の課題について紹介する。
次に,多言語GEICフレームワークであるCascadeNERを提案する。
我々はまた、Large Language Models(LLMs)用に特別に設計された最初のNERデータセットであるAnythingNERを紹介します。
- 参考スコア(独自算出の注目度): 7.714969840571947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have supplanted traditional methods in numerous natural language processing tasks. Nonetheless, in Named Entity Recognition (NER), existing LLM-based methods underperform compared to baselines and require significantly more computational resources, limiting their application. In this paper, we introduce the task of generation-based extraction and in-context classification (GEIC), designed to leverage LLMs' prior knowledge and self-attention mechanisms for NER tasks. We then propose CascadeNER, a universal and multilingual GEIC framework for few-shot and zero-shot NER. CascadeNER employs model cascading to utilize two small-parameter LLMs to extract and classify independently, reducing resource consumption while enhancing accuracy. We also introduce AnythingNER, the first NER dataset specifically designed for LLMs, including 8 languages, 155 entity types and a novel dynamic categorization system. Experiments show that CascadeNER achieves state-of-the-art performance on low-resource and fine-grained scenarios, including CrossNER and FewNERD. Our work is openly accessible.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多くの自然言語処理タスクにおいて従来の手法に取って代わっている。
それでも、名前付きエンティティ認識(NER)では、既存のLCMベースのメソッドはベースラインよりも性能が低く、計算リソースが大幅に必要であり、アプリケーションを制限する。
本稿では,NER タスクに対する LLM の事前知識と自己認識機構を活用するために設計された,ジェネレーションベース抽出とインコンテキスト分類(GEIC)の課題を紹介する。
次に,多言語GEICフレームワークであるCascadeNERを提案する。
CascadeNER はモデルカスケードを用いて2つの小パラメータ LLM を独立に抽出・分類し、精度を高めながら資源消費を減らす。
また、LLM用に特別に設計された最初のNERデータセットであるAnythingNERについても紹介する。
実験によると、CascadeNERはCrossNERやFewNERDなど、低リソースできめ細かいシナリオで最先端のパフォーマンスを実現している。
私たちの仕事は公然とアクセスできます。
関連論文リスト
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
本稿では,Large Language Models (LLM) をモデル選択の軽量な代替手段として活用することを提案する。
提案手法は, LLMの固有知識と推論能力を活用することで, 明示的な性能行列の必要性を解消する。
論文 参考訳(メタデータ) (2025-04-02T20:33:27Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) は、言語理解、画像理解、言語と画像の接点の相互作用を評価するためのクロスモーダルなタスクである。
2つの重要な特徴を持つ新しいRECデータセットを導入する。第一に、オブジェクトカテゴリ、属性、関係性に関する詳細な推論を必要とする、制御可能な難易度で設計されている。
第二に、微粒な編集によって生成された否定的なテキストと画像が組み込まれ、既存のターゲットを拒否するモデルの能力を明示的にテストする。
論文 参考訳(メタデータ) (2025-02-27T13:58:44Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - ReverseNER: A Self-Generated Example-Driven Framework for Zero-Shot Named Entity Recognition with Large Language Models [0.0]
ゼロショット名前付きエンティティ認識タスクにおいて,大規模言語モデル(LLM)の限界を克服するためのフレームワークであるReverseNERを提案する。
文から始めるのではなく、LLMを使用して定義に基づいてエンティティを生成し、それらを全文に拡張する。
その結果,タスク文と意味的・構造的類似性を保ちながら,明確にラベル付けされたエンティティを持つ注釈付き文が得られた。
論文 参考訳(メタデータ) (2024-11-01T12:08:08Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
動的セマンティック・インデックス・パラダイムを採用した最初の生成型RSであるTTDS(Twin-Tower Dynamic Semantic Recommender)を提案する。
より具体的には、ツイン・トワー・セマンティック・トークン・ジェネレータをLLMベースのレコメンデータに統合する動的知識融合フレームワークを初めて提案する。
提案したTTDSレコメンデータは,平均19.41%のヒットレート,20.84%のNDCG測定値を実現している。
論文 参考訳(メタデータ) (2024-09-14T01:45:04Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition [3.4923338594757674]
大型言語モデル(LLM)は、様々な種類のエンティティを抽出できるモデルを訓練するために使用することができる。
本稿では,オープンソースのLLM LLaMA2をバックボーンモデルとして利用し,異なるタイプのエンティティとデータセットを区別するための具体的な命令を設計する。
我々のモデルVANERは、パラメータの小さな分割で訓練され、従来のLLMモデルよりも大幅に優れており、LLMをベースとしたモデルとして初めて、従来の最先端のBioNERシステムの大部分を上回りました。
論文 参考訳(メタデータ) (2024-04-27T09:00:39Z) - ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language Models [25.68491572293656]
大規模言語モデルは、名前付きエンティティ認識のような構造化された知識抽出タスクにおいて不足する。
本稿では,より優れたNERデータセットを生成するため,LCMを質素なNER能力で活用するための革新的で費用効率のよい戦略について検討する。
論文 参考訳(メタデータ) (2024-03-17T06:12:43Z) - NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data [41.94295877935867]
Named Entity Recognitionタスクに特化したコンパクト言語表現モデルであるNuNERの作成方法を示す。
NuNERは、データ効率のよい方法で下流のNER問題を解決するように微調整できる。
トレーニング済みデータセットのサイズとエンティティタイプの多様性が、優れたパフォーマンスを実現するための鍵であることが分かりました。
論文 参考訳(メタデータ) (2024-02-23T14:23:51Z) - In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
数発のネストネストNERの設定に有効で革新的なICLフレームワークを導入する。
我々は、新しい実演選択機構であるEnDe retrieverを考案し、ICLプロンプトを改善する。
EnDe検索では,意味的類似性,境界類似性,ラベル類似性という3種類の表現学習を行うために,コントラスト学習を用いる。
論文 参考訳(メタデータ) (2024-02-02T06:57:53Z) - GLiNER: Generalist Model for Named Entity Recognition using
Bidirectional Transformer [4.194768796374315]
名前付きエンティティ認識(NER)は、様々な自然言語処理(NLP)アプリケーションに必須である。
本稿では,任意の種類のエンティティを識別するために訓練されたコンパクトなNERモデルを提案する。
我々のモデルであるGLiNERは、Large Language Models (LLM) の遅いシーケンシャルトークン生成に対するアドバンテージである並列エンティティ抽出を容易にする。
論文 参考訳(メタデータ) (2023-11-14T20:39:12Z) - NERetrieve: Dataset for Next Generation Named Entity Recognition and
Retrieval [49.827932299460514]
我々は、大きな言語モデルによって提供される能力は、NER研究の終わりではなく、むしろエキサイティングな始まりであると主張する。
我々は、NERタスクの3つの変種と、それらをサポートするデータセットを示す。
500のエンティティタイプをカバーする400万段落の,大規模で銀の注釈付きコーパスを提供する。
論文 参考訳(メタデータ) (2023-10-22T12:23:00Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
我々のモデルは,現在の最先端手法よりも桁違いに小さく,高速でありながら,競争力のある結果が得られることを示す。
我々のマルチラベル戦略は、マルチクラス分類よりも非ターゲット言語の方が堅牢である。
論文 参考訳(メタデータ) (2023-06-02T23:04:19Z) - IXA/Cogcomp at SemEval-2023 Task 2: Context-enriched Multilingual Named
Entity Recognition using Knowledge Bases [53.054598423181844]
3つのステップからなる新しいNERカスケードアプローチを提案する。
我々は、細粒度および新興物質を正確に分類する上で、外部知識基盤の重要性を実証的に示す。
本システムは,低リソース言語設定においても,マルチコネラ2共有タスクにおいて頑健な性能を示す。
論文 参考訳(メタデータ) (2023-04-20T20:30:34Z) - GPT-NER: Named Entity Recognition via Large Language Models [58.609582116612934]
GPT-NERはシーケンスラベリングタスクを言語モデルで容易に適用可能な生成タスクに変換する。
GPT-NERは、トレーニングデータの量が極めて少ない場合、低リソースかつ少数ショットのセットアップにおいて、より優れた能力を示す。
これは、ラベル付きサンプルの数が限られている実世界のNERアプリケーションにおけるGPT-NERの機能を示す。
論文 参考訳(メタデータ) (2023-04-20T16:17:26Z) - An Open-Source Dataset and A Multi-Task Model for Malay Named Entity
Recognition [3.511753382329252]
マレーNERデータセット(MYNER)を28,991文(384万個以上)で構築する。
NERトレーニングを明示的かつ暗黙的に改善するために、補助的なタスクである境界検出が導入されている。
論文 参考訳(メタデータ) (2021-09-03T03:29:25Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
言語間NERは、知識をリッチリソース言語から低リソース言語に転送する。
既存の言語間NERメソッドは、ターゲット言語でリッチなラベル付けされていないデータをうまく利用しない。
半教師付き学習と強化学習のアイデアに基づく新しいアプローチを開発する。
論文 参考訳(メタデータ) (2021-06-01T05:46:22Z) - One Model to Recognize Them All: Marginal Distillation from NER Models
with Different Tag Sets [30.445201832698192]
名前付きエンティティ認識(NER)は、現代の言語理解パイプラインの基本コンポーネントである。
本稿では,不均一なタグセットを持つ資源から統一NERモデルを訓練するための限界蒸留(MARDI)手法を提案する。
論文 参考訳(メタデータ) (2020-04-10T17:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。