Down-Sampling Inter-Layer Adapter for Parameter and Computation Efficient Ultra-Fine-Grained Image Recognition
- URL: http://arxiv.org/abs/2409.11051v1
- Date: Tue, 17 Sep 2024 10:17:34 GMT
- Title: Down-Sampling Inter-Layer Adapter for Parameter and Computation Efficient Ultra-Fine-Grained Image Recognition
- Authors: Edwin Arkel Rios, Femiloye Oyerinde, Min-Chun Hu, Bo-Cheng Lai,
- Abstract summary: We introduce a novel approach employing down-sampling inter-layer adapters in a parameter-efficient setting.
By integrating dual-branch down-sampling, we significantly reduce the number of parameters and floating-point operations required.
Our method increases the average accuracy by at least 6.8% compared to other methods in the parameter-efficient setting.
- Score: 5.332719186390523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultra-fine-grained image recognition (UFGIR) categorizes objects with extremely small differences between classes, such as distinguishing between cultivars within the same species, as opposed to species-level classification in fine-grained image recognition (FGIR). The difficulty of this task is exacerbated due to the scarcity of samples per category. To tackle these challenges we introduce a novel approach employing down-sampling inter-layer adapters in a parameter-efficient setting, where the backbone parameters are frozen and we only fine-tune a small set of additional modules. By integrating dual-branch down-sampling, we significantly reduce the number of parameters and floating-point operations (FLOPs) required, making our method highly efficient. Comprehensive experiments on ten datasets demonstrate that our approach obtains outstanding accuracy-cost performance, highlighting its potential for practical applications in resource-constrained environments. In particular, our method increases the average accuracy by at least 6.8\% compared to other methods in the parameter-efficient setting while requiring at least 123x less trainable parameters compared to current state-of-the-art UFGIR methods and reducing the FLOPs by 30\% in average compared to other methods.
Related papers
- Remote Sensing Image Classification with Decoupled Knowledge Distillation [2.698114369639173]
This paper proposes a lightweight classification method based on knowledge distillation.<n>The proposed method achieves nearly equivalent Top-1 accuracy while reducing the number of parameters by 6.24 times.
arXiv Detail & Related papers (2025-05-25T12:06:28Z) - OP-LoRA: The Blessing of Dimensionality [93.08208871549557]
Low-rank adapters enable fine-tuning of large models with only a small number of parameters.
They often pose optimization challenges, with poor convergence.
We introduce an over- parameterized approach that accelerates training without increasing inference costs.
We achieve improvements in vision-language tasks and especially notable increases in image generation.
arXiv Detail & Related papers (2024-12-13T18:55:19Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.
Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
We present a contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints.
Our method minimizes logit differences within the same sample by considering their numerical values.
We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO.
arXiv Detail & Related papers (2024-04-22T11:52:40Z) - Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning [0.0]
Cross-domain few-shot classification presents the challenging task of learning new classes in previously unseen domains.
We introduce a lightweight parameter-efficient adaptation strategy to address overfitting associated with fine-tuning a large number of parameters on small datasets.
We replace the traditional nearest centroid with a discriminative sample-aware loss function, enhancing the model's sensitivity to the inter- and intra-class variances.
arXiv Detail & Related papers (2024-03-07T13:49:29Z) - Generative Parameter-Efficient Fine-Tuning [8.481707805559589]
GIFT learns to generate the fine-tuned weights for a layer directly from its pretrained weights.
We show this formulation bridges parameter-efficient fine-tuning and representation fine-tuning.
arXiv Detail & Related papers (2023-12-01T16:33:57Z) - Efficient Hybrid Oversampling and Intelligent Undersampling for
Imbalanced Big Data Classification [1.03590082373586]
We present a novel resampling method called SMOTENN that combines intelligent undersampling and oversampling using a MapReduce framework.
Our experimental results show the virtues of this approach, outperforming alternative resampling techniques for small- and medium-sized datasets.
arXiv Detail & Related papers (2023-10-09T15:22:13Z) - Parameter-Efficient Fine-Tuning without Introducing New Latency [7.631596468553607]
We introduce a novel adapter technique that directly applies the adapter to pre-trained parameters instead of the hidden representation.
Our proposed method attains a new state-of-the-art outcome in terms of both performance and storage efficiency, storing only 0.03% parameters of full fine-tuning.
arXiv Detail & Related papers (2023-05-26T08:44:42Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial
Attack [74.5144793386864]
LSDAT crafts perturbations in the low-dimensional subspace formed by the sparse component of the input sample and that of an adversarial sample.
LSD works directly in the image pixel domain to guarantee that non-$ell$ constraints, such as sparsity, are satisfied.
arXiv Detail & Related papers (2021-03-19T13:10:47Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - Robust Learning Rate Selection for Stochastic Optimization via Splitting
Diagnostic [5.395127324484869]
SplitSGD is a new dynamic learning schedule for optimization.
The method decreases the learning rate for better adaptation to the local geometry of the objective function.
It essentially does not incur additional computational cost than standard SGD.
arXiv Detail & Related papers (2019-10-18T19:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.