Large Language Models are Good Multi-lingual Learners : When LLMs Meet Cross-lingual Prompts
- URL: http://arxiv.org/abs/2409.11056v1
- Date: Tue, 17 Sep 2024 10:33:27 GMT
- Title: Large Language Models are Good Multi-lingual Learners : When LLMs Meet Cross-lingual Prompts
- Authors: Teng Wang, Zhenqi He, Wing-Yin Yu, Xiaojin Fu, Xiongwei Han,
- Abstract summary: We propose a novel prompting strategy Multi-Lingual Prompt, namely MLPrompt.
MLPrompt translates the error-prone rule that an LLM struggles to follow into another language, thus drawing greater attention to it.
We introduce a framework integrating MLPrompt with an auto-checking mechanism for structured data generation, with a specific case study in text-to-MIP instances.
- Score: 5.520335305387487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of Large Language Models (LLMs), generating rule-based data for real-world applications has become more accessible. Due to the inherent ambiguity of natural language and the complexity of rule sets, especially in long contexts, LLMs often struggle to follow all specified rules, frequently omitting at least one. To enhance the reasoning and understanding of LLMs on long and complex contexts, we propose a novel prompting strategy Multi-Lingual Prompt, namely MLPrompt, which automatically translates the error-prone rule that an LLM struggles to follow into another language, thus drawing greater attention to it. Experimental results on public datasets across various tasks have shown MLPrompt can outperform state-of-the-art prompting methods such as Chain of Thought, Tree of Thought, and Self-Consistency. Additionally, we introduce a framework integrating MLPrompt with an auto-checking mechanism for structured data generation, with a specific case study in text-to-MIP instances. Further, we extend the proposed framework for text-to-SQL to demonstrate its generation ability towards structured data synthesis.
Related papers
- UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
Multimodal Entities Linking (MEL) is a crucial task that aims at linking ambiguous mentions within multimodal contexts to referent entities in a multimodal knowledge base, such as Wikipedia.
Existing methods overcomplicate the MEL task and overlook the visual semantic information, which makes them costly and hard to scale.
We propose UniMEL, a unified framework which establishes a new paradigm to process multimodal entity linking tasks using Large Language Models.
arXiv Detail & Related papers (2024-07-23T03:58:08Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - CRE-LLM: A Domain-Specific Chinese Relation Extraction Framework with Fine-tuned Large Language Model [1.9950682531209156]
Domain-Specific Chinese Relation Extraction (DSCRE) aims to extract relations between entities from domain-specific Chinese text.
Given the impressive performance of large language models (LLMs) in natural language processing, we propose a new framework called CRE-LLM.
arXiv Detail & Related papers (2024-04-28T06:27:15Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
This paper introduces Structure Guided Prompt, a framework designed to improve the multi-step reasoning capabilities of Large Language Models (LLMs)
Our experiments show that this framework significantly enhances the reasoning capabilities of LLMs, enabling them to excel in a broader spectrum of natural language scenarios.
arXiv Detail & Related papers (2024-02-20T22:56:23Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Can Large Language Models Understand Real-World Complex Instructions? [54.86632921036983]
Large language models (LLMs) can understand human instructions, but struggle with complex instructions.
Existing benchmarks are insufficient to assess LLMs' ability to understand complex instructions.
We propose CELLO, a benchmark for evaluating LLMs' ability to follow complex instructions systematically.
arXiv Detail & Related papers (2023-09-17T04:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.