論文の概要: Online Combinatorial Allocations and Auctions with Few Samples
- arxiv url: http://arxiv.org/abs/2409.11091v1
- Date: Tue, 17 Sep 2024 11:43:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:55:21.994490
- Title: Online Combinatorial Allocations and Auctions with Few Samples
- Title(参考訳): オンラインアロケーションといくつかのサンプルによるオークション
- Authors: Paul Dütting, Thomas Kesselheim, Brendan Lucier, Rebecca Reiffenhäuser, Sahil Singla,
- Abstract要約: 本稿では,O(1)競合アルゴリズムの実現可能性について,基礎となる入札者分布から限られた数のサンプルにしかアクセスできないという現実的な制約の下で検討する。
最初の主な貢献は, サブモジュール/XOS評価のためのO(1)競合アルゴリズムを得るのに, 各入札者分布からのサンプルだけで十分であることを示している。
- 参考スコア(独自算出の注目度): 9.675397292814122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In online combinatorial allocations/auctions, n bidders sequentially arrive, each with a combinatorial valuation (such as submodular/XOS) over subsets of m indivisible items. The aim is to immediately allocate a subset of the remaining items to maximize the total welfare, defined as the sum of bidder valuations. A long line of work has studied this problem when the bidder valuations come from known independent distributions. In particular, for submodular/XOS valuations, we know 2-competitive algorithms/mechanisms that set a fixed price for each item and the arriving bidders take their favorite subset of the remaining items given these prices. However, these algorithms traditionally presume the availability of the underlying distributions as part of the input to the algorithm. Contrary to this assumption, practical scenarios often require the learning of distributions, a task complicated by limited sample availability. This paper investigates the feasibility of achieving O(1)-competitive algorithms under the realistic constraint of having access to only a limited number of samples from the underlying bidder distributions. Our first main contribution shows that a mere single sample from each bidder distribution is sufficient to yield an O(1)-competitive algorithm for submodular/XOS valuations. This result leverages a novel extension of the secretary-style analysis, employing the sample to have the algorithm compete against itself. Although online, this first approach does not provide an online truthful mechanism. Our second main contribution shows that a polynomial number of samples suffices to yield a $(2+\epsilon)$-competitive online truthful mechanism for submodular/XOS valuations and any constant $\epsilon>0$. This result is based on a generalization of the median-based algorithm for the single-item prophet inequality problem to combinatorial settings with multiple items.
- Abstract(参考訳): オンラインの組合せ割当/オークションでは、n個の入札者が順次到着し、それぞれm個の不可分なアイテムのサブセットに対する組合せのバリュエーション(サブモジュール/XOSなど)を持つ。
その目的は、入札者評価の合計として定義された全福祉を最大化するために、直ちに残りの項目のサブセットを割り当てることである。
入札者の評価が既知の独立分布から来ると、長い研究がこの問題を研究している。
特に、サブモジュール/XOSのバリュエーションでは、各アイテムに固定価格を設定する2競合アルゴリズム/メカニズムが知られており、購入者はこれらの価格から残りのアイテムのお気に入りのサブセットを取る。
しかし、これらのアルゴリズムは伝統的に、アルゴリズムへの入力の一部として、基礎となる分布の可用性を前提としている。
この仮定とは対照的に、実際のシナリオでは、限られたサンプル可用性によって複雑なタスクである分布の学習を必要とすることが多い。
本稿では,O(1)競合アルゴリズムの実現可能性について,基礎となる入札者分布から限られた数のサンプルにしかアクセスできないという現実的な制約の下で検討する。
最初の主な貢献は, サブモジュール/XOS評価のためのO(1)競合アルゴリズムを得るのに, 各入札者分布からのサンプルだけで十分であることを示している。
この結果は秘書スタイルの分析の新たな拡張を活用し、アルゴリズムが自身と競うためにサンプルを利用する。
オンラインではありますが、この最初のアプローチは、オンラインの真実のメカニズムを提供していません。
2つ目の主な貢献は、サブモジュラー/XOSアセスメントと任意の定数$\epsilon>0$に対して(2+\epsilon)$-competitive online truthful mechanism を得るのに十分であることを示している。
この結果は、単体預言不等式問題に対する中央値に基づくアルゴリズムを、複数項目の組合せ設定に一般化したものである。
関連論文リスト
- Minimax and Communication-Efficient Distributed Best Subset Selection with Oracle Property [0.358439716487063]
大規模データの爆発はシングルマシンシステムの処理能力を上回っている。
分散推論への伝統的なアプローチは、高次元データセットにおいて真の疎性を達成するのにしばしば苦労する。
そこで本稿では,これらの問題に対処する2段階分散ベストサブセット選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-30T13:22:08Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
我々は,選択した$n$のアームセットのジョイント報酬以外の余分な情報が観測されない場合に,マルチアームのバンディット問題に対する新規グリーディ・バンディット(SGB)アルゴリズムを提案する。
SGBは最適化された拡張型コミットアプローチを採用しており、ベースアームの大きなセットを持つシナリオ用に特別に設計されている。
論文 参考訳(メタデータ) (2023-12-13T11:08:25Z) - Non-Stochastic CDF Estimation Using Threshold Queries [3.6576781735746513]
実験的な分布を2つの課題で推定する問題に取り組む。
まず、アルゴリズムはデータを直接観察するのではなく、サンプルについて限られた数のしきい値クエリしか要求しない。
第二に、データは独立で同一の分散であると仮定されず、代わりにサンプルを生成する任意のプロセスが可能である。
論文 参考訳(メタデータ) (2023-01-13T18:00:57Z) - On-Demand Sampling: Learning Optimally from Multiple Distributions [63.20009081099896]
社会と現実世界の考察は、マルチディストリビューション学習パラダイムの台頭につながっている。
これらの学習パラダイムの最適なサンプル複雑性を確立し、このサンプル複雑性を満たすアルゴリズムを提供する。
アルゴリズムの設計と解析は,ゼロサムゲーム解決のためのオンライン学習手法の拡張によって実現されている。
論文 参考訳(メタデータ) (2022-10-22T19:07:26Z) - Bayesian Optimization-based Combinatorial Assignment [10.73407470973258]
オークションやコースアロケーションを含むアサインドメインについて検討する。
この領域の主な課題は、バンドル空間がアイテム数で指数関数的に増加することである。
論文 参考訳(メタデータ) (2022-08-31T08:47:02Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
本稿では,バンディットフィードバックを用いたオンラインクラスタリングの問題点について考察する。
これは、NPハード重み付きクラスタリング問題をサブルーチンとして解決する必要性を回避するための、シーケンシャルなテストのための新しい停止規則を含む。
合成および実世界のデータセットの広範なシミュレーションを通して、BOCの性能は下界と一致し、非適応的ベースラインアルゴリズムよりも大幅に優れることを示す。
論文 参考訳(メタデータ) (2022-02-09T06:05:05Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
本稿では,ギャップベースアルゴリズムと逐次除去に基づく2つのアルゴリズムを提案する。
具体的には、ギャップベースのアルゴリズムでは、サンプルの複雑さは定数要素まで最適であり、連続的な除去では対数因子まで最適である。
論文 参考訳(メタデータ) (2021-11-14T21:49:58Z) - Robust Learning of Optimal Auctions [84.13356290199603]
本研究では、入札者の評価値のサンプルを逆向きに破損させたり、逆向きに歪んだ分布から引き出すことができる場合に、サンプルから収益-最適マルチバイダオークションを学習する問題について検討する。
我々は,コルモゴロフ-スミルノフ距離における元の分布に対して$alpha$-closeの「全ての真の分布」に対して,収入がほぼ同時に最適であるメカニズムを学習できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-13T17:37:21Z) - A Game-Theoretic Analysis of the Empirical Revenue Maximization
Algorithm with Endogenous Sampling [19.453243313852557]
実証収益最大化(ERM)はオークションデザインにおいて最も重要な価格学習アルゴリズムの1つである。
我々は、Laviらによって提案されたインセンティブ認識尺度の定義を一般化し、$N$の入力サンプルから$mge 1$の変化によるERMの出力価格の低減を定量化する。
本研究では, 単価オークションにおいて, 単価オークションにおけるグループインセンティブ・コンパチビリティを近似的に示すために, ERM を用いた効率よく, ほぼインセンティブに適合し, 収益に最適な学習アルゴリズムを構築した。
論文 参考訳(メタデータ) (2020-10-12T08:20:35Z) - A General Method for Robust Learning from Batches [56.59844655107251]
本稿では,バッチから頑健な学習を行う一般的なフレームワークについて考察し,連続ドメインを含む任意の領域に対する分類と分布推定の限界について考察する。
本手法は,一括分節分類,一括分節,単調,対数凹,ガウス混合分布推定のための,最初の頑健な計算効率の学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-25T18:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。