SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer
- URL: http://arxiv.org/abs/2409.11190v2
- Date: Sun, 27 Oct 2024 05:57:07 GMT
- Title: SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer
- Authors: Anmol Gautam, Kishore Kumar, Adarsh Jha, Mukunda NS, Ishaan Bhola,
- Abstract summary: SuperCoder2.0 is an advanced autonomous system designed to enhance software development through artificial intelligence.
System combines an AI-native development approach with intelligent agents to enable fully autonomous coding.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present SuperCoder2.0, an advanced autonomous system designed to enhance software development through artificial intelligence. The system combines an AI-native development approach with intelligent agents to enable fully autonomous coding. Key focus areas include a retry mechanism with error output traceback, comprehensive code rewriting and replacement using Abstract Syntax Tree (ast) parsing to minimize linting issues, code embedding technique for retrieval-augmented generation, and a focus on localizing methods for problem-solving rather than identifying specific line numbers. The methodology employs a three-step hierarchical search space reduction approach for code base navigation and bug localization:utilizing Retrieval Augmented Generation (RAG) and a Repository File Level Map to identify candidate files, (2) narrowing down to the most relevant files using a File Level Schematic Map, and (3) extracting 'relevant locations' within these files. Code editing is performed through a two-part module comprising CodeGeneration and CodeEditing, which generates multiple solutions at different temperature values and replaces entire methods or classes to maintain code integrity. A feedback loop executes repository-level test cases to validate and refine solutions. Experiments conducted on the SWE-bench Lite dataset demonstrate SuperCoder2.0's effectiveness, achieving correct file localization in 84.33% of cases within the top 5 candidates and successfully resolving 34% of test instances. This performance places SuperCoder2.0 fourth globally on the SWE-bench leaderboard. The system's ability to handle diverse repositories and problem types highlights its potential as a versatile tool for autonomous software development. Future work will focus on refining the code editing process and exploring advanced embedding models for improved natural language to code mapping.
Related papers
- RepoGraph: Enhancing AI Software Engineering with Repository-level Code Graph [63.87660059104077]
We present RepoGraph, a plug-in module that manages a repository-level structure for modern AI software engineering solutions.
RepoGraph substantially boosts the performance of all systems, leading to a new state-of-the-art among open-source frameworks.
arXiv Detail & Related papers (2024-10-03T05:45:26Z) - No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair [9.562123938545522]
toolname can integrate various code search, generation, and repair tools, combining these three research areas together for the first time.
We conduct preliminary experiments to demonstrate the potential of our framework, eg helping CodeLlama solve 267 programming problems with an improvement of 62.53%.
arXiv Detail & Related papers (2024-09-05T06:24:29Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.
We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.
We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
We present textbfmethodnamews, a novel benchmark designed to evaluate repository-level code generation.
We focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts.
arXiv Detail & Related papers (2024-06-17T10:45:22Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - Prompt-based Code Completion via Multi-Retrieval Augmented Generation [15.233727939816388]
ProCC is a code completion framework leveraging prompt engineering and the contextual multi-armed bandits algorithm.
ProCC outperforms state-of-the-art code completion technique by 8.6% on our collected open-source benchmark suite.
ProCC also allows augmenting fine-tuned techniques in a plug-and-play manner, yielding 5.6% improvement over our studied fine-tuned model.
arXiv Detail & Related papers (2024-05-13T07:56:15Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoder is a framework to streamline the repository-level code completion process.
It incorporates a similarity-based retriever and a pre-trained code language model.
It consistently outperforms the vanilla retrieval-augmented code completion approach.
arXiv Detail & Related papers (2023-03-22T13:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.