A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation
- URL: http://arxiv.org/abs/2411.07586v1
- Date: Tue, 12 Nov 2024 06:47:54 GMT
- Title: A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation
- Authors: Avinash Anand, Akshit Gupta, Nishchay Yadav, Shaurya Bajaj,
- Abstract summary: 27 recent papers have been reviewed and split into two groups.
The first group consists of new methods for bug detection and repair, which include locating semantic errors.
The second group dwells on code generation, providing an overview of both general-purpose LLMs fine-tuned for programming and task-specific models.
It also presents methods to improve code generation, such as identifier-aware training, fine-tuning at the instruction level, and incorporating semantic code structures.
- Score: 0.0
- License:
- Abstract: Bug fixing and code generation have been core research topics in software development for many years. The recent explosive growth in Large Language Models has completely transformed these spaces, putting in reach incredibly powerful tools for both. In this survey, 27 recent papers have been reviewed and split into two groups: one dedicated to Automated Program Repair (APR) and LLM integration and the other to code generation using LLMs. The first group consists of new methods for bug detection and repair, which include locating semantic errors, security vulnerabilities, and runtime failure bugs. The place of LLMs in reducing manual debugging efforts is emphasized in this work by APR toward context-aware fixes, with innovations that boost accuracy and efficiency in automatic debugging. The second group dwells on code generation, providing an overview of both general-purpose LLMs fine-tuned for programming and task-specific models. It also presents methods to improve code generation, such as identifier-aware training, fine-tuning at the instruction level, and incorporating semantic code structures. This survey work contrasts the methodologies in APR and code generation to identify trends such as using LLMs, feedback loops to enable iterative code improvement and open-source models. It also discusses the challenges of achieving functional correctness and security and outlines future directions for research in LLM-based software development.
Related papers
- RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
Large Language Models (LLMs) have shown incredible potential in code generation tasks.
LLMs can generate code based on task descriptions, but accuracy remains limited.
We introduce a novel architecture of LLM-based agents for code generation and automatic debug: Refinement and Guidance debugger (RGD)
RGD decomposes the code generation task into multiple steps, ensuring a clearer workflow and enabling iterative code refinement based on self-reflection and feedback.
arXiv Detail & Related papers (2024-10-02T05:07:02Z) - No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair [9.562123938545522]
toolname can integrate various code search, generation, and repair tools, combining these three research areas together for the first time.
We conduct preliminary experiments to demonstrate the potential of our framework, eg helping CodeLlama solve 267 programming problems with an improvement of 62.53%.
arXiv Detail & Related papers (2024-09-05T06:24:29Z) - An Empirical Study on Self-correcting Large Language Models for Data Science Code Generation [1.335664823620186]
Large Language Models (LLMs) have recently advanced many applications on software engineering tasks.
CoT-SelfEvolve iteratively and automatically refines code through a self-correcting process.
arXiv Detail & Related papers (2024-08-28T09:19:09Z) - Revisiting Evolutionary Program Repair via Code Language Model [11.711739409758476]
This paper introduces ARJA-CLM, which integrates the multiobjective evolutionary algorithm with CLM to fix multilocation bugs in Java projects.
We also propose a context-aware prompt construction stratege, which enriches the prompt with additional information about accessible fields and methods for the CLM generating candidate statements.
arXiv Detail & Related papers (2024-08-20T01:57:45Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [10.510325069289324]
We propose a self-refinement method aimed at improving the reliability of code generated by LLMs.
Our approach is based on targeted Verification Questions (VQs) to identify potential bugs within the initial code.
Our method attempts to repair these potential bugs by re-prompting the LLM with the targeted VQs and the initial code.
arXiv Detail & Related papers (2024-05-22T19:02:50Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules [51.82044734879657]
We propose CodeChain, a novel framework for inference that elicits modularized code generation through a chain of self-revisions.
We find that CodeChain can significantly boost both modularity as well as correctness of the generated solutions, achieving relative pass@1 improvements of 35% on APPS and 76% on CodeContests.
arXiv Detail & Related papers (2023-10-13T10:17:48Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.