論文の概要: Generalized Few-Shot Semantic Segmentation in Remote Sensing: Challenge and Benchmark
- arxiv url: http://arxiv.org/abs/2409.11227v1
- Date: Tue, 17 Sep 2024 14:20:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:25:29.039773
- Title: Generalized Few-Shot Semantic Segmentation in Remote Sensing: Challenge and Benchmark
- Title(参考訳): リモートセンシングにおける一般的なFew-Shotセマンティックセマンティックセマンティックセグメンテーション:チャレンジとベンチマーク
- Authors: Clifford Broni-Bediako, Junshi Xia, Jian Song, Hongruixuan Chen, Mennatullah Siam, Naoto Yokoya,
- Abstract要約: ほとんどショットのセマンティックセグメンテーションは、訓練中に見られない新しいクラスのラベル付き例から学ぶことをディープラーニングモデルに促す。
一般化された数ショットセグメンテーション設定では、モデルが新しいクラスに適応するだけでなく、トレーニングベースクラスで強力なパフォーマンスを維持することを奨励する追加の課題がある。
一般化された数ショット評価設定のためにラベル付けされた追加クラスを備えたOpenEarthMapの拡張データセットをリリースする。
- 参考スコア(独自算出の注目度): 18.636210870172675
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning with limited labelled data is a challenging problem in various applications, including remote sensing. Few-shot semantic segmentation is one approach that can encourage deep learning models to learn from few labelled examples for novel classes not seen during the training. The generalized few-shot segmentation setting has an additional challenge which encourages models not only to adapt to the novel classes but also to maintain strong performance on the training base classes. While previous datasets and benchmarks discussed the few-shot segmentation setting in remote sensing, we are the first to propose a generalized few-shot segmentation benchmark for remote sensing. The generalized setting is more realistic and challenging, which necessitates exploring it within the remote sensing context. We release the dataset augmenting OpenEarthMap with additional classes labelled for the generalized few-shot evaluation setting. The dataset is released during the OpenEarthMap land cover mapping generalized few-shot challenge in the L3D-IVU workshop in conjunction with CVPR 2024. In this work, we summarize the dataset and challenge details in addition to providing the benchmark results on the two phases of the challenge for the validation and test sets.
- Abstract(参考訳): ラベル付きデータによる学習は、リモートセンシングなど、さまざまなアプリケーションにおいて難しい問題である。
ほとんどショットのセマンティックセグメンテーションは、ディープラーニングモデルがトレーニング中に見られない新しいクラスのラベル付き例から学ぶことを奨励する1つのアプローチである。
一般化された数ショットセグメンテーション設定では、モデルが新しいクラスに適応するだけでなく、トレーニングベースクラスで強力なパフォーマンスを維持することを奨励する追加の課題がある。
従来のデータセットやベンチマークでは、リモートセンシングにおける数ショットセグメンテーション設定について論じていたが、リモートセンシングのための一般化された数ショットセグメンテーションベンチマークを最初に提案した。
一般化された設定はより現実的で困難であり、リモートセンシングコンテキスト内でそれを探索する必要がある。
一般化された数ショット評価設定のためにラベル付けされた追加クラスを備えたOpenEarthMapの拡張データセットをリリースする。
データセットはOpenEarthMapのランドカバーマッピングでリリースされ、CVPR 2024と共同でL3D-IVUワークショップで一般化された数ショットチャレンジが実施された。
本研究は,データセットと課題の詳細を要約し,検証とテストセットの2段階のベンチマーク結果を提供する。
関連論文リスト
- A Fresh Take on Stale Embeddings: Improving Dense Retriever Training with Corrector Networks [81.2624272756733]
密集検索では、ディープエンコーダは入力とターゲットの両方に埋め込みを提供する。
我々は、古いキャッシュされたターゲット埋め込みを調整できる小さなパラメトリック補正ネットワークを訓練する。
私たちのアプローチは、トレーニング中にターゲット埋め込み更新が行われなくても、最先端の結果と一致します。
論文 参考訳(メタデータ) (2024-09-03T13:29:13Z) - GenCo: An Auxiliary Generator from Contrastive Learning for Enhanced
Few-Shot Learning in Remote Sensing [9.504503675097137]
我々は、バックボーンを事前訓練し、同時に特徴サンプルの変種を探索するジェネレータベースのコントラスト学習フレームワーク(GenCo)を導入する。
微調整では、補助ジェネレータを使用して、特徴空間内の限られたラベル付きデータサンプルを濃縮することができる。
本稿では,2つの重要なリモートセンシングデータセットにおいて,この手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-27T03:59:19Z) - Text2Seg: Remote Sensing Image Semantic Segmentation via Text-Guided Visual Foundation Models [7.452422412106768]
リモートセマンティックセマンティックセグメンテーションのためのText2Segという新しい手法を提案する。
自動プロンプト生成プロセスを使用することで、広範なアノテーションへの依存を克服する。
我々は,Text2SegがバニラSAMモデルと比較してゼロショット予測性能を著しく向上することを示した。
論文 参考訳(メタデータ) (2023-04-20T18:39:41Z) - A Global Model Approach to Robust Few-Shot SAR Automatic Target
Recognition [6.260916845720537]
ディープラーニングベースのSAR自動ターゲット認識(ATR)モデルをトレーニングするために、クラス毎に数百のラベル付きサンプルを収集できるとは限らない。
この研究は特に数発のSAR ATR問題に対処しており、興味のあるタスクをサポートするためにラベル付きサンプルがわずかである。
論文 参考訳(メタデータ) (2023-03-20T00:24:05Z) - StandardSim: A Synthetic Dataset For Retail Environments [0.07874708385247352]
本稿では,意味的セグメンテーション,インスタンスセグメンテーション,深さ推定,オブジェクト検出のためのアノテーションを特徴とする大規模合成データセットを提案する。
私たちのデータセットはシーン毎に複数のビューを提供し、マルチビュー表現学習を可能にします。
我々は、データセットのセグメンテーションと深さ推定に広く使用されているモデルをベンチマークし、我々のテストセットが現在の小規模データセットと比較して難しいベンチマークを構成することを示す。
論文 参考訳(メタデータ) (2022-02-04T22:28:35Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
セマンティックセグメンテーションデータセットを異なるドメインから統合する合成データセットであるMSegを提案する。
一般化と画素レベルのアノテーションのアライメントを調整し,2万枚以上のオブジェクトマスクを8万枚以上の画像で再現する。
MSegでトレーニングされたモデルは、WildDash-v1のリーダーボードで、トレーニング中にWildDashのデータに触れることなく、堅牢なセマンティックセグメンテーションのためにランク付けされている。
論文 参考訳(メタデータ) (2021-12-27T16:16:35Z) - Large-scale Unsupervised Semantic Segmentation [163.3568726730319]
本稿では, 大規模無教師付きセマンティックセマンティックセグメンテーション (LUSS) の新たな課題を提案する。
ImageNetデータセットに基づいて、120万のトレーニング画像と40万の高品質なセマンティックセグメンテーションアノテーションを用いた画像Net-Sデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-06T15:02:11Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - SVIRO: Synthetic Vehicle Interior Rear Seat Occupancy Dataset and
Benchmark [11.101588888002045]
SVIROは10台の異なる車両の旅客室におけるシーンの合成データセットである。
限られたバリエーションに基づいて学習した際の一般化能力と信頼性について、機械学習に基づくアプローチを解析する。
論文 参考訳(メタデータ) (2020-01-10T14:44:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。