論文の概要: Evaluating the Impact of Compression Techniques on Task-Specific Performance of Large Language Models
- arxiv url: http://arxiv.org/abs/2409.11233v1
- Date: Tue, 17 Sep 2024 14:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:25:29.032137
- Title: Evaluating the Impact of Compression Techniques on Task-Specific Performance of Large Language Models
- Title(参考訳): 大規模言語モデルのタスク特化性能に及ぼす圧縮手法の影響評価
- Authors: Bishwash Khanal, Jeffery M. Capone,
- Abstract要約: 大規模言語モデル(LLM)は強力な能力を提供するが、かなりの計算コストがかかる。
本研究では,LLaMA-2-7Bモデルに対する圧縮法の影響について検討した。
SparseGPTとWandaは50%の間隔でも難易度を保っているが,下流タスクでは著しく低下している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) offer powerful capabilities but incur substantial computational costs, driving the need for efficient compression techniques. This study evaluates the impact of popular compression methods - Magnitude Pruning, SparseGPT, and Wanda - on the LLaMA-2-7B model, focusing on the trade-offs between model size reduction, downstream task performance, and the role of calibration data. Our findings reveal that while SparseGPT and Wanda preserve perplexity even at 50% sparsity, they suffer significant degradation on downstream tasks, highlighting the inadequacy of perplexity as the sole evaluation metric. To address this, we introduce Jensen-Shannon (JS) Divergence as a more comprehensive metric that captures nuanced changes in model behavior post-compression. We further demonstrate that task-specific calibration data significantly enhances the downstream performance of compressed models compared to general calibration data. This research underscores the necessity for diverse evaluation metrics and careful calibration data selection to fully understand the complexities of LLM compression and its implications for practical applications.
- Abstract(参考訳): 大規模言語モデル(LLM)は強力な能力を提供するが、かなりの計算コストがかかるため、効率的な圧縮技術の必要性が高まっている。
本研究では,LLaMA-2-7Bモデルに対する一般的な圧縮手法であるMagnitude Pruning, SparseGPT, Wandaの影響を評価し,モデルサイズ削減,ダウンストリームタスク性能,キャリブレーションデータの役割のトレードオフに着目した。
以上の結果から,SparseGPTとWandaは50%の間隔でもパープレキシティを保ちつつも,下流作業では有意に低下し,唯一の評価基準としてパープレキシティの欠如が浮き彫りとなった。
これを解決するために、Jensen-Shannon (JS) Divergenceを、圧縮後のモデル行動の微妙な変化を捉える、より包括的なメトリクスとして紹介する。
さらに,タスク固有のキャリブレーションデータが,一般的なキャリブレーションデータと比較して圧縮モデルの下流性能を著しく向上させることを示した。
本研究は, LLM圧縮の複雑さとその実用への応用を十分に理解するために, 多様な評価指標と慎重な校正データ選択が必要であることを明らかにする。
関連論文リスト
- Beware of Calibration Data for Pruning Large Language Models [41.1689082093302]
トレーニング後のプルーニングは、リソース集約的な反復的なトレーニングを必要としない有望な方法である。
キャリブレーションデータの効果は, 先進的な刈り取り戦略を設計するよりもさらに価値が高いことを示す。
予備調査では、トレーニングデータに類似したキャリブレーションデータを使用することで、より良いパフォーマンスが得られることも明らかにした。
論文 参考訳(メタデータ) (2024-10-23T09:36:21Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
大型言語モデル(LLM)はゼロショット設定でグラデーション先行として振る舞うことができる。
本稿では,LSMと算術符号を統合する新しい手法であるLM-GCを紹介する。
論文 参考訳(メタデータ) (2024-09-26T13:38:33Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - The Cost of Compression: Investigating the Impact of Compression on
Parametric Knowledge in Language Models [11.156816338995503]
大規模言語モデル(LLM)は、より高速な推論、メモリフットプリントの縮小、ローカルデプロイメントを可能にする。
2つの標準的な圧縮手法はプルーニングと量子化であり、前者はモデル層における冗長な接続を排除し、後者はより少ないビットでモデルパラメータを表現する。
LLM圧縮に関する既存の研究は、主にパープレキシティやダウンストリームタスクの精度といった一般的な指標のパフォーマンスに焦点を当てている。
パラメトリックな知識を測定するような、よりきめ細かいメトリクスは、いまだにかなり過小評価されている。
論文 参考訳(メタデータ) (2023-12-01T22:27:12Z) - On the Impact of Calibration Data in Post-training Quantization and Pruning [36.1039389951318]
量子化とプルーニングは、ニューラルネットワークの圧縮の基礎となる。
モデル圧縮法におけるキャリブレーションデータの影響に関する実験的検討を行った。
論文 参考訳(メタデータ) (2023-11-16T10:30:00Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
視覚プロンプティングは、コンピュータビジョンにおける伝達学習の重要な方法として登場した。
モデル圧縮は視覚的プロンプトベース転送の性能に有害である。
しかし、量子化によってモデルが圧縮されるとき、キャリブレーションに対する負の効果は存在しない。
論文 参考訳(メタデータ) (2023-08-29T01:47:49Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Language model compression with weighted low-rank factorization [73.61874728240568]
本稿では,モデル予測に影響を及ぼすパラメータの重要性を評価するために,フィッシャー情報を紹介する。
結果のタスク精度は、元のモデルの性能にかなり近いことがわかった。
提案手法は,タスク固有のモデルを直接圧縮し,他のコンパクトモデル戦略よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-06-30T21:57:07Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
本稿では,知識蒸留とプルーニングを含む2つの一般的なモデル圧縮手法について検討する。
本研究では, 圧縮モデルが, 対向テストセット上のPLMモデルよりもはるかに頑健であることを示す。
サンプル不確実性に基づくモデル圧縮の正規化戦略を開発する。
論文 参考訳(メタデータ) (2021-10-16T00:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。