論文の概要: STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking
- arxiv url: http://arxiv.org/abs/2409.11234v1
- Date: Tue, 17 Sep 2024 14:34:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:25:29.028860
- Title: STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking
- Title(参考訳): STCMOT:UAVによる複数物体追跡のための時空間結合学習
- Authors: Jianbo Ma, Chuanming Tang, Fei Wu, Can Zhao, Jianlin Zhang, Zhiyong Xu,
- Abstract要約: 無人航空機(UAV)ビデオにおける複数物体追跡(MOT)は、コンピュータビジョンにおける多様な用途において重要である。
時空間結合型多目的追跡フレームワーク(STCMOT)を提案する。
歴史的埋め込み機能を用いて,ReIDの表現と検出機能を逐次的にモデル化する。
我々のフレームワークはMOTAとIDF1メトリクスで新しい最先端のパフォーマンスを設定します。
- 参考スコア(独自算出の注目度): 13.269416985959404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision. Current MOT trackers rely on accurate object detection results and precise matching of target reidentification (ReID). These methods focus on optimizing target spatial attributes while overlooking temporal cues in modelling object relationships, especially for challenging tracking conditions such as object deformation and blurring, etc. To address the above-mentioned issues, we propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT), which utilizes historical embedding features to model the representation of ReID and detection features in a sequential order. Concretely, a temporal embedding boosting module is introduced to enhance the discriminability of individual embedding based on adjacent frame cooperation. While the trajectory embedding is then propagated by a temporal detection refinement module to mine salient target locations in the temporal field. Extensive experiments on the VisDrone2019 and UAVDT datasets demonstrate our STCMOT sets a new state-of-the-art performance in MOTA and IDF1 metrics. The source codes are released at https://github.com/ydhcg-BoBo/STCMOT.
- Abstract(参考訳): 無人航空機(UAV)ビデオにおける複数物体追跡(MOT)は、コンピュータビジョンにおける多様な用途において重要である。
現在のMOTトラッカーは、正確な対象検出結果とターゲット再識別(ReID)の正確なマッチングに依存している。
これらの手法は,物体関係のモデル化における時間的手がかりを見越しながら,対象空間特性の最適化に重点を置いている。
上記の課題に対処するため, 歴史的埋め込み機能を用いてReIDの表現と検出機能を逐次的にモデル化する新しい時空間結合型多目的追跡フレームワーク(STCMOT)を提案する。
具体的には、隣接するフレーム協調に基づく個別の埋め込みの識別性を高めるために、時間的埋め込み促進モジュールを導入する。
そして、軌道埋め込みを時間検出精製モジュールで伝播させ、時間フィールド内の有意な目標位置をマイニングする。
VisDrone2019 と UAVDT データセットに関する大規模な実験では、STCMOT がMOTA と IDF1 のメトリクスで新しい最先端のパフォーマンスを設定できることを示した。
ソースコードはhttps://github.com/ydhcg-BoBo/STCMOTで公開されている。
関連論文リスト
- Transformer Network for Multi-Person Tracking and Re-Identification in
Unconstrained Environment [0.6798775532273751]
マルチオブジェクトトラッキング(MOT)は、監視、スポーツ分析、自動運転、協調ロボットなど、さまざまな分野に深く応用されている。
我々は、オブジェクト検出とアイデンティティリンクを単一のエンドツーエンドのトレーニング可能なフレームワーク内にマージする統合MOT手法を提唱した。
本システムでは,記憶時記憶モジュールの高機能化を図り,アグリゲータを用いて効果的に記憶時記憶モジュールを符号化する。
論文 参考訳(メタデータ) (2023-12-19T08:15:22Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
本稿では,多目的追跡パイプラインのためのビデオオブジェクト中心モデルを提案する。
オブジェクト中心のスロットを検出出力に適応するインデックスマージモジュールと、オブジェクトメモリモジュールで構成される。
オブジェクト中心学習に特化して、オブジェクトのローカライゼーションと機能バインディングのためのスパース検出ラベルしか必要としない。
論文 参考訳(メタデータ) (2023-09-01T03:34:12Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3Dマルチオブジェクトトラッキング(MOT)は、自律走行車やサービスロボットを含む多くのアプリケーションにとって不可欠である。
本稿では,新しいポイントクラウドベースの3DMOTフレームワークであるTrjectoryFormerを紹介する。
論文 参考訳(メタデータ) (2023-06-09T13:31:50Z) - Tracking Objects and Activities with Attention for Temporal Sentence
Grounding [51.416914256782505]
時間文 (TSG) は、意味的に自然言語のクエリと一致した時間セグメントを、トリミングされていないセグメントでローカライズすることを目的としている。
本稿では,(A)マルチモーダル・検索空間を生成するクロスモーダル・ターゲット・ジェネレータと(B)マルチモーダル・ターゲットの動作を追跡し,クエリ関連セグメントを予測するテンポラル・センセント・トラッカーとを含む,新しいテンポラル・センセント・トラッカー・ネットワーク(TSTNet)を提案する。
論文 参考訳(メタデータ) (2023-02-21T16:42:52Z) - STURE: Spatial-Temporal Mutual Representation Learning for Robust Data
Association in Online Multi-Object Tracking [7.562844934117318]
提案手法は、より区別された検出とシーケンス表現を抽出することができる。
パブリックMOTチャレンジベンチマークに適用され、様々な最先端のオンラインMOTトラッカーとよく比較される。
論文 参考訳(メタデータ) (2022-01-18T08:52:40Z) - Multi-Object Tracking and Segmentation with a Space-Time Memory Network [12.043574473965318]
トラックレットを関連づける新しいメモリベース機構に基づく多目的追跡とセグメンテーションの手法を提案する。
提案するトラッカーであるMeNToSは、特に長期データアソシエーションの問題に対処する。
論文 参考訳(メタデータ) (2021-10-21T17:13:17Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - TDIOT: Target-driven Inference for Deep Video Object Tracking [0.2457872341625575]
本研究では,事前訓練したMask R-CNNディープオブジェクト検出器をベースラインとして採用する。
本研究では,Mask R-CNNのFPN-ResNet101バックボーン上に新しい推論アーキテクチャを導入し,検出と追跡を共同で行う。
提案する単一オブジェクトトラッカであるtdiotは、データアソシエーションに外観類似性に基づく時間マッチングを適用する。
論文 参考訳(メタデータ) (2021-03-19T20:45:06Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
時間情報と空間情報のより効果的な融合のための新しい動的時空間ネットワーク(DSNet)を提案する。
提案手法は最先端アルゴリズムよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-09T06:42:30Z) - Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking
from View Aggregation [8.854112907350624]
3Dマルチオブジェクトトラッキングは、自律ナビゲーションにおいて重要な役割を果たす。
多くのアプローチでは、トラッキングのための2次元RGBシーケンス内のオブジェクトを検出するが、これは3次元空間内のオブジェクトをローカライズする際の信頼性の欠如である。
本稿では,隣接フレーム内の各オブジェクト間の相関をよりよく活用するために,RelationConvという新しい畳み込み演算を提案する。
論文 参考訳(メタデータ) (2020-11-25T16:14:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。