Performance of Cross-Validated Targeted Maximum Likelihood Estimation
- URL: http://arxiv.org/abs/2409.11265v2
- Date: Wed, 18 Sep 2024 07:26:40 GMT
- Title: Performance of Cross-Validated Targeted Maximum Likelihood Estimation
- Authors: Matthew J. Smith, Rachael V. Phillips, Camille Maringe, Miguel Angel Luque-Fernandez,
- Abstract summary: We investigate the performance of CVTMLE compared to TMLE in various settings.
CVTMLE vastly improves confidence interval coverage without adversely affecting bias.
We show through simulations that CVTMLE is much less sensitive to the choice of the super learner library.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Advanced methods for causal inference, such as targeted maximum likelihood estimation (TMLE), require certain conditions for statistical inference. However, in situations where there is not differentiability due to data sparsity or near-positivity violations, the Donsker class condition is violated. In such situations, TMLE variance can suffer from inflation of the type I error and poor coverage, leading to conservative confidence intervals. Cross-validation of the TMLE algorithm (CVTMLE) has been suggested to improve on performance compared to TMLE in settings of positivity or Donsker class violations. We aim to investigate the performance of CVTMLE compared to TMLE in various settings. Methods: We utilised the data-generating mechanism as described in Leger et al. (2022) to run a Monte Carlo experiment under different Donsker class violations. Then, we evaluated the respective statistical performances of TMLE and CVTMLE with different super learner libraries, with and without regression tree methods. Results: We found that CVTMLE vastly improves confidence interval coverage without adversely affecting bias, particularly in settings with small sample sizes and near-positivity violations. Furthermore, incorporating regression trees using standard TMLE with ensemble super learner-based initial estimates increases bias and variance leading to invalid statistical inference. Conclusions: It has been shown that when using CVTMLE the Donsker class condition is no longer necessary to obtain valid statistical inference when using regression trees and under either data sparsity or near-positivity violations. We show through simulations that CVTMLE is much less sensitive to the choice of the super learner library and thereby provides better estimation and inference in cases where the super learner library uses more flexible candidates and is prone to overfitting.
Related papers
- On the Performance of Empirical Risk Minimization with Smoothed Data [59.3428024282545]
Empirical Risk Minimization (ERM) is able to achieve sublinear error whenever a class is learnable with iid data.
We show that ERM is able to achieve sublinear error whenever a class is learnable with iid data.
arXiv Detail & Related papers (2024-02-22T21:55:41Z) - Is K-fold cross validation the best model selection method for Machine Learning? [0.0]
K-fold cross-validation (CV) is the most common approach to ascertaining the likelihood that a machine learning outcome is generated by chance.
A novel statistical test based on K-fold CV and the Upper Bound of the actual risk (K-fold CUBV) is proposed.
arXiv Detail & Related papers (2024-01-29T18:46:53Z) - Discriminative calibration: Check Bayesian computation from simulations
and flexible classifier [23.91355980551754]
We propose to replace the marginal rank test with a flexible classification approach that learns test statistics from data.
We illustrate an automated implementation using neural networks and statistically-inspired features, and validate the method with numerical and real data experiments.
arXiv Detail & Related papers (2023-05-24T00:18:48Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Equivariance and Invariance Inductive Bias for Learning from
Insufficient Data [65.42329520528223]
We show why insufficient data renders the model more easily biased to the limited training environments that are usually different from testing.
We propose a class-wise invariant risk minimization (IRM) that efficiently tackles the challenge of missing environmental annotation in conventional IRM.
arXiv Detail & Related papers (2022-07-25T15:26:19Z) - RIFLE: Imputation and Robust Inference from Low Order Marginals [10.082738539201804]
We develop a statistical inference framework for regression and classification in the presence of missing data without imputation.
Our framework, RIFLE, estimates low-order moments of the underlying data distribution with corresponding confidence intervals to learn a distributionally robust model.
Our experiments demonstrate that RIFLE outperforms other benchmark algorithms when the percentage of missing values is high and/or when the number of data points is relatively small.
arXiv Detail & Related papers (2021-09-01T23:17:30Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.