MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
- URL: http://arxiv.org/abs/2409.11316v1
- Date: Tue, 17 Sep 2024 16:14:03 GMT
- Title: MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
- Authors: Amirreza Fateh, Mohammad Reza Mohammadi, Mohammad Reza Jahed Motlagh,
- Abstract summary: Few-shot Semantic addresses the challenge of segmenting objects in query images with only a handful of examples.
We propose a new Few-shot Semantic framework based on the transformer architecture.
Our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies.
- Score: 1.1557852082644071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi-scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve state-of-the-art results on benchmark datasets such as $PASCAL-5^i$ and $COCO-20^i$ in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. https://github.com/amirrezafateh/MSDNet
Related papers
- MacFormer: Semantic Segmentation with Fine Object Boundaries [38.430631361558426]
We introduce a new semantic segmentation architecture, MacFormer'', which features two key components.
Firstly, using learnable agent tokens, a Mutual Agent Cross-Attention (MACA) mechanism effectively facilitates the bidirectional integration of features across encoder and decoder layers.
Secondly, a Frequency Enhancement Module (FEM) in the decoder leverages high-frequency and low-frequency components to boost features in the frequency domain.
MacFormer is demonstrated to be compatible with various network architectures and outperforms existing methods in both accuracy and efficiency on datasets benchmark ADE20K and Cityscapes.
arXiv Detail & Related papers (2024-08-11T05:36:10Z) - Early Fusion of Features for Semantic Segmentation [10.362589129094975]
This paper introduces a novel segmentation framework that integrates a classifier network with a reverse HRNet architecture for efficient image segmentation.
Our methodology is rigorously tested across several benchmark datasets including Mapillary Vistas, Cityscapes, CamVid, COCO, and PASCAL-VOC2012.
The results demonstrate the effectiveness of our proposed model in achieving high segmentation accuracy, indicating its potential for various applications in image analysis.
arXiv Detail & Related papers (2024-02-08T22:58:06Z) - Hierarchical Dense Correlation Distillation for Few-Shot
Segmentation-Extended Abstract [47.85056124410376]
Few-shot semantic segmentation (FSS) aims to form class-agnostic models segmenting unseen classes with only a handful of annotations.
We design Hierarchically Decoupled Matching Network (HDMNet) mining pixel-level support correlation based on the transformer architecture.
We propose a matching module to reduce train-set overfitting and introduce correlation distillation leveraging semantic correspondence from coarse resolution to boost fine-grained segmentation.
arXiv Detail & Related papers (2023-06-27T08:10:20Z) - Hierarchical Dense Correlation Distillation for Few-Shot Segmentation [46.696051965252934]
Few-shot semantic segmentation (FSS) aims to form class-agnostic models segmenting unseen classes with only a handful of annotations.
We design Hierarchically Decoupled Matching Network (HDMNet) mining pixel-level support correlation based on the transformer architecture.
We propose a matching module to reduce train-set overfitting and introduce correlation distillation leveraging semantic correspondence from coarse resolution to boost fine-grained segmentation.
arXiv Detail & Related papers (2023-03-26T08:13:12Z) - Semantics-Aware Dynamic Localization and Refinement for Referring Image
Segmentation [102.25240608024063]
Referring image segments an image from a language expression.
We develop an algorithm that shifts from being localization-centric to segmentation-language.
Compared to its counterparts, our method is more versatile yet effective.
arXiv Detail & Related papers (2023-03-11T08:42:40Z) - ColonFormer: An Efficient Transformer based Method for Colon Polyp
Segmentation [1.181206257787103]
ColonFormer is an encoder-decoder architecture with the capability of modeling long-range semantic information.
Our ColonFormer achieve state-of-the-art performance on all benchmark datasets.
arXiv Detail & Related papers (2022-05-17T16:34:04Z) - APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic
Segmentation [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a given query image with only a few labeled support images.
Most advanced solutions exploit a metric learning framework that performs segmentation through matching each query feature to a learned class-specific prototype.
We present an adaptive prototype representation by introducing class-specific and class-agnostic prototypes.
arXiv Detail & Related papers (2021-11-24T04:38:37Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples.
Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype.
This framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only.
arXiv Detail & Related papers (2021-04-19T11:21:47Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
arXiv Detail & Related papers (2020-12-31T18:55:57Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
One common strategy is to adopt dilated convolutions in the backbone networks to extract high-resolution feature maps.
We propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps.
arXiv Detail & Related papers (2020-12-18T10:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.