Learning Unstable Continuous-Time Stochastic Linear Control Systems
- URL: http://arxiv.org/abs/2409.11327v1
- Date: Tue, 17 Sep 2024 16:24:51 GMT
- Title: Learning Unstable Continuous-Time Stochastic Linear Control Systems
- Authors: Reza Sadeghi Hafshejani, Mohamad Kazem Shirani Fradonbeh,
- Abstract summary: We study the problem of system identification for continuous-time dynamics, based on a single finite-length state trajectory.
We present a method for estimating the possibly unstable open-loop matrix by employing properly randomized control inputs.
We establish theoretical performance guarantees showing that the estimation error decays with trajectory length, a measure of excitability, and the signal-to-noise ratio.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of system identification for stochastic continuous-time dynamics, based on a single finite-length state trajectory. We present a method for estimating the possibly unstable open-loop matrix by employing properly randomized control inputs. Then, we establish theoretical performance guarantees showing that the estimation error decays with trajectory length, a measure of excitability, and the signal-to-noise ratio, while it grows with dimension. Numerical illustrations that showcase the rates of learning the dynamics, will be provided as well. To perform the theoretical analysis, we develop new technical tools that are of independent interest. That includes non-asymptotic stochastic bounds for highly non-stationary martingales and generalized laws of iterated logarithms, among others.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Regret Analysis of Certainty Equivalence Policies in Continuous-Time
Linear-Quadratic Systems [0.0]
This work studies theoretical performance guarantees of a ubiquitous reinforcement learning policy for controlling the canonical model of linear-quadratic system.
We establish square-root of time regret bounds, indicating that randomized certainty equivalent policy learns optimal control actions fast from a single state trajectory.
arXiv Detail & Related papers (2022-06-09T11:47:36Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
This paper presents a neural network model of an optimal contraction metric and corresponding differential Lyapunov function.
Its innovation lies in providing formal robustness guarantees for learning-based control frameworks.
arXiv Detail & Related papers (2021-10-02T00:28:49Z) - Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview [17.05002635077646]
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system.
Its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality.
arXiv Detail & Related papers (2021-10-01T23:03:21Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Neural Stochastic Contraction Metrics for Learning-based Control and
Estimation [13.751135823626493]
The NSCM framework allows autonomous agents to approximate optimal stable control and estimation policies in real-time.
It outperforms existing nonlinear control and estimation techniques including the state-dependent Riccati equation, iterative LQR, EKF, and the neural contraction.
arXiv Detail & Related papers (2020-11-06T03:04:42Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Logarithmic regret for episodic continuous-time linear-quadratic
reinforcement learning over a finite-time horizon [7.123160883637873]
We study continuous-time linear-quadratic reinforcement learning problems in an episodic setting.
We propose a least-squares algorithm based on continuous-time observations and controls.
arXiv Detail & Related papers (2020-06-27T08:14:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.