Online Inference for Quantiles by Constant Learning-Rate Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2503.02178v1
- Date: Tue, 04 Mar 2025 01:37:42 GMT
- Title: Online Inference for Quantiles by Constant Learning-Rate Stochastic Gradient Descent
- Authors: Ziyang Wei, Jiaqi Li, Likai Chen, Wei Biao Wu,
- Abstract summary: This paper proposes an online inference method of the gradient descent (SGD) with a constant learning rate for quantile loss functions with theoretical guarantees.<n> Numerical studies demonstrate strong finite-sample performance of our proposed quantile estimator and inference method.
- Score: 4.2694059987063655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an online inference method of the stochastic gradient descent (SGD) with a constant learning rate for quantile loss functions with theoretical guarantees. Since the quantile loss function is neither smooth nor strongly convex, we view such SGD iterates as an irreducible and positive recurrent Markov chain. By leveraging this interpretation, we show the existence of a unique asymptotic stationary distribution, regardless of the arbitrarily fixed initialization. To characterize the exact form of this limiting distribution, we derive bounds for its moment generating function and tail probabilities, controlling over the first and second moments of SGD iterates. By these techniques, we prove that the stationary distribution converges to a Gaussian distribution as the constant learning rate $\eta\rightarrow0$. Our findings provide the first central limit theorem (CLT)-type theoretical guarantees for the last iterate of constant learning-rate SGD in non-smooth and non-strongly convex settings. We further propose a recursive algorithm to construct confidence intervals of SGD iterates in an online manner. Numerical studies demonstrate strong finite-sample performance of our proposed quantile estimator and inference method. The theoretical tools in this study are of independent interest to investigate general transition kernels in Markov chains.
Related papers
- Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
We develop novel high-dimensional concentration inequalities and Berry-Esseen bounds for vector- and matrix-valued functions of Markov chains.<n>We analyze the TD learning algorithm, a widely used method for policy evaluation in reinforcement learning.
arXiv Detail & Related papers (2025-02-19T15:33:55Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Asymptotics of Stochastic Gradient Descent with Dropout Regularization in Linear Models [8.555650549124818]
This paper proposes a theory for online inference of the gradient descent (SGD) iterates with dropout regularization in linear regression.
For sufficiently large samples, the proposed confidence intervals for ASGD with dropout nearly achieve the nominal coverage probability.
arXiv Detail & Related papers (2024-09-11T17:28:38Z) - Effect of Random Learning Rate: Theoretical Analysis of SGD Dynamics in Non-Convex Optimization via Stationary Distribution [6.144680854063938]
We consider a variant of the gradient descent (SGD) with a random learning rate to reveal its convergence properties.
We demonstrate that a distribution of a parameter updated by Poisson SGD converges to a stationary distribution under weak assumptions.
arXiv Detail & Related papers (2024-06-23T06:52:33Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Almost-sure convergence of iterates and multipliers in stochastic
sequential quadratic optimization [21.022322975077653]
Methods for solving continuous optimization problems with equality constraints have attracted attention recently.
convergence guarantees have been limited to the expected value of a gradient to measure zero.
New almost-sure convergence guarantees for the primals, Lagrange measures and station measures generated by a SQP algorithm are proved.
arXiv Detail & Related papers (2023-08-07T16:03:40Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance [0.0]
In this paper, a general optimization procedure is studied, unifying several variants of the gradient descent such as, among others, the heavy ball method, the Nesterov Accelerated Gradient (S-NAG), and the widely used Adam method.
The avoidance is studied as a noisy discretization of a non-autonomous ordinary differential equation.
arXiv Detail & Related papers (2020-12-07T19:14:49Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.