Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement
- URL: http://arxiv.org/abs/2409.11378v1
- Date: Tue, 17 Sep 2024 17:25:31 GMT
- Title: Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement
- Authors: Simon Yu, Liangyu Chen, Sara Ahmadian, Marzieh Fadaee,
- Abstract summary: Finetuning large language models on instruction data is crucial for enhancing pre-trained knowledge and improving instruction-following capabilities.
This work addresses the question: How can we determine the optimal subset of data for effective training?
Our method employs k-means clustering to ensure the selected subset effectively represents the full dataset.
- Score: 8.509688686402438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finetuning large language models on instruction data is crucial for enhancing pre-trained knowledge and improving instruction-following capabilities. As instruction datasets proliferate, selecting optimal data for effective training becomes increasingly important. This work addresses the question: How can we determine the optimal subset of data for effective training? While existing research often emphasizes local criteria like instance quality for subset selection, we argue that a global approach focused on data diversity is more critical. Our method employs k-means clustering to ensure the selected subset effectively represents the full dataset. We propose an iterative refinement method inspired by active learning techniques to resample instances from clusters, reassessing each cluster's importance and sampling weight in every training iteration. This approach reduces the effect of outliers and automatically filters out clusters containing low-quality data. Through extensive evaluation across natural language reasoning, general world knowledge, code and math reasoning tasks, and by fine-tuning models from various families, we observe consistent improvements, achieving a 7% increase over random selection and a 3.8% improvement over state-of-the-art sampling methods. Our work highlights the significance of diversity-first sampling when finetuning LLMs to enhance performance across a broad array of evaluation tasks. Our code is available at https://github.com/for-ai/iterative-data-selection.
Related papers
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$ is a new multi-way and adaptive data selection approach for Lifelong Instruction Tuning.
We construct pseudo-skill clusters by grouping gradient-based sample vectors.
We select the best-performing data selector for each skill cluster from a pool of selector experts.
arXiv Detail & Related papers (2024-10-14T15:48:09Z) - Harnessing Diversity for Important Data Selection in Pretraining Large Language Models [39.89232835928945]
textttQuad considers both quality and diversity by using data influence to achieve state-of-the-art pre-training results.
For the diversity, textttQuad clusters the dataset into similar data instances within each cluster and diverse instances across different clusters.
arXiv Detail & Related papers (2024-09-25T14:49:29Z) - TAGCOS: Task-agnostic Gradient Clustered Coreset Selection for Instruction Tuning Data [29.45013725650798]
It is essential to extract a subset of instruction datasets that achieves comparable performance to the full dataset.
We propose Task-Agnostic Gradient Clustered COreset Selection (TAGCOS)
Specifically, we leverage sample gradients as the data representations, perform clustering to group similar data, and apply an efficient greedy algorithm for coreset selection.
arXiv Detail & Related papers (2024-07-21T17:59:20Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - Towards General and Efficient Active Learning [20.888364610175987]
Active learning aims to select the most informative samples to exploit limited annotation budgets.
We propose a novel general and efficient active learning (GEAL) method in this paper.
Our method can conduct data selection processes on different datasets with a single-pass inference of the same model.
arXiv Detail & Related papers (2021-12-15T08:35:28Z) - Multiple-criteria Based Active Learning with Fixed-size Determinantal
Point Processes [43.71112693633952]
We introduce a multiple-criteria based active learning algorithm, which incorporates three complementary criteria, i.e., informativeness, representativeness and diversity.
We show that our method performs significantly better and is more stable than other multiple-criteria based AL algorithms.
arXiv Detail & Related papers (2021-07-04T13:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.