Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm
- URL: http://arxiv.org/abs/2503.02359v1
- Date: Tue, 04 Mar 2025 07:32:41 GMT
- Title: Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm
- Authors: Zhuo Li, Yuhao Du, Xiaoqi Jiao, Yiwen Guo, Yuege Feng, Xiang Wan, Anningzhe Gao, Jinpeng Hu,
- Abstract summary: This paper introduces a novel choice-based sample selection framework that shifts the focus from evaluating individual sample quality to comparing the contribution value of different samples.<n>Thanks to the advanced language understanding capabilities of Large Language Models (LLMs), we utilize LLMs to evaluate the value of each option during the selection process.
- Score: 41.4789135538612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selecting high-quality and diverse training samples from extensive datasets plays a crucial role in reducing training overhead and enhancing the performance of Large Language Models (LLMs). However, existing studies fall short in assessing the overall value of selected data, focusing primarily on individual quality, and struggle to strike an effective balance between ensuring diversity and minimizing data point traversals. Therefore, this paper introduces a novel choice-based sample selection framework that shifts the focus from evaluating individual sample quality to comparing the contribution value of different samples when incorporated into the subset. Thanks to the advanced language understanding capabilities of LLMs, we utilize LLMs to evaluate the value of each option during the selection process. Furthermore, we design a greedy sampling process where samples are incrementally added to the subset, thereby improving efficiency by eliminating the need for exhaustive traversal of the entire dataset with the limited budget. Extensive experiments demonstrate that selected data from our method not only surpass the performance of the full dataset but also achieves competitive results with state-of-the-art (SOTA) studies, while requiring fewer selections. Moreover, we validate our approach on a larger medical dataset, highlighting its practical applicability in real-world applications.
Related papers
- MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning [69.7347209018861]
We introduce MLLM-Selector, an automated approach that identifies valuable data for visual instruction tuning.
We calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance.
Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector.
arXiv Detail & Related papers (2025-03-26T12:42:37Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement [8.509688686402438]
Finetuning large language models on instruction data is crucial for enhancing pre-trained knowledge and improving instruction-following capabilities.
This work addresses the question: How can we determine the optimal subset of data for effective training?
Our method employs k-means clustering to ensure the selected subset effectively represents the full dataset.
arXiv Detail & Related papers (2024-09-17T17:25:31Z) - Dataset Quantization with Active Learning based Adaptive Sampling [11.157462442942775]
We show that maintaining performance is feasible even with uneven sample distributions.
We propose a novel active learning based adaptive sampling strategy to optimize the sample selection.
Our approach outperforms the state-of-the-art dataset compression methods.
arXiv Detail & Related papers (2024-07-09T23:09:18Z) - Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models [36.22392593103493]
Data selection for fine-tuning large language models (LLMs) aims to choose a high-quality subset from existing datasets.<n>Existing surveys overlook an in-depth exploration of the fine-tuning phase.<n>We introduce a novel three-stage scheme - comprising feature extraction, criteria design, and selector evaluation - to systematically categorize and evaluate these methods.
arXiv Detail & Related papers (2024-06-20T08:58:58Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.