論文の概要: Training Datasets Generation for Machine Learning: Application to Vision Based Navigation
- arxiv url: http://arxiv.org/abs/2409.11383v1
- Date: Tue, 17 Sep 2024 17:34:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 15:25:38.484278
- Title: Training Datasets Generation for Machine Learning: Application to Vision Based Navigation
- Title(参考訳): 機械学習のためのトレーニングデータセット生成:視覚に基づくナビゲーションへの応用
- Authors: Jérémy Lebreton, Ingo Ahrns, Roland Brochard, Christoph Haskamp, Matthieu Le Goff, Nicolas Menga, Nicolas Ollagnier, Ralf Regele, Francesco Capolupo, Massimo Casasco,
- Abstract要約: 視覚ベースのナビゲーションは、画像から情報を抽出した後、GNCの精密センサーとしてカメラを利用する。
宇宙アプリケーションにおける機械学習の採用を可能にするために、利用可能なトレーニングデータセットがアルゴリズムの検証に適していることの実証が障害のひとつだ。
本研究の目的は,機械学習アルゴリズムの学習に適した画像とメタデータのデータセットを作成することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision Based Navigation consists in utilizing cameras as precision sensors for GNC after extracting information from images. To enable the adoption of machine learning for space applications, one of obstacles is the demonstration that available training datasets are adequate to validate the algorithms. The objective of the study is to generate datasets of images and metadata suitable for training machine learning algorithms. Two use cases were selected and a robust methodology was developed to validate the datasets including the ground truth. The first use case is in-orbit rendezvous with a man-made object: a mockup of satellite ENVISAT. The second use case is a Lunar landing scenario. Datasets were produced from archival datasets (Chang'e 3), from the laboratory at DLR TRON facility and at Airbus Robotic laboratory, from SurRender software high fidelity image simulator using Model Capture and from Generative Adversarial Networks. The use case definition included the selection of algorithms as benchmark: an AI-based pose estimation algorithm and a dense optical flow algorithm were selected. Eventually it is demonstrated that datasets produced with SurRender and selected laboratory facilities are adequate to train machine learning algorithms.
- Abstract(参考訳): 視覚ベースのナビゲーションは、画像から情報を抽出した後、GNCの精密センサーとしてカメラを利用する。
宇宙アプリケーションにおける機械学習の採用を可能にするために、利用可能なトレーニングデータセットがアルゴリズムの検証に適していることの実証が障害のひとつだ。
本研究の目的は,機械学習アルゴリズムの学習に適した画像とメタデータのデータセットを作成することである。
2つのユースケースが選択され、基礎的真実を含むデータセットを検証するための堅牢な方法論が開発された。
最初のユースケースは、人工衛星ENVISATのモックアップである人造物体を持つ軌道上のランデブーである。
第2のユースケースは、月面着陸シナリオである。
データセットは、DLR TRONの研究所とAirbus Roboticの研究室から、Model CaptureとGenerative Adversarial Networksを使ったSurRenderソフトウェアによる高忠実度イメージシミュレータから、アーカイブデータセット(Chang'e 3)から作成されました。
ユースケース定義には、アルゴリズムをベンチマークとして選択することが含まれ、AIベースのポーズ推定アルゴリズムと高密度光フローアルゴリズムが選択された。
最終的に、SurRenderと選択された実験施設で生成されたデータセットが機械学習アルゴリズムのトレーニングに適していることが実証された。
関連論文リスト
- Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets [0.0]
本稿では,カメラと機械学習アルゴリズムを組み合わせることで,相対的なナビゲーションを実現する方法について論じる。
高速領域ベース畳み込みニューラルネットワーク(R-CNN)とYou Only Look Once(YOLOv5)の2つのディープラーニングに基づくオブジェクト検出アルゴリズムの性能を検証した。
本稿では, 特徴認識アルゴリズムの実装と, 宇宙船誘導航法制御システムへの統合に向けての道筋について論じる。
論文 参考訳(メタデータ) (2023-01-22T04:53:38Z) - HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D
Images [58.720142291102135]
本稿では,屋内環境における視覚的位置認識能力の探索を目的とした,HPointLocという新しいデータセットを提案する。
データセットは人気のあるHabitatシミュレータに基づいており、独自のセンサーデータとオープンデータセットの両方を使用して屋内シーンを生成することができる。
論文 参考訳(メタデータ) (2022-12-30T12:20:56Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
本稿では,機械学習を用いた衛星画像時系列解析のためのオープンソースRパッケージである sit について述べる。
本手法は, Cerrado Biome のケーススタディにより, 土地利用と土地被覆マップの精度が高いことを示す。
論文 参考訳(メタデータ) (2022-04-24T15:23:25Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Ground material classification and for UAV-based photogrammetric 3D data
A 2D-3D Hybrid Approach [1.3359609092684614]
近年,物理環境を表す3次元仮想データを作成するために,多くの領域でフォトグラム法が広く用いられている。
これらの最先端技術は、迅速な3D戦場再建、仮想訓練、シミュレーションを目的として、アメリカ陸軍と海軍の注意を引き付けている。
論文 参考訳(メタデータ) (2021-09-24T22:29:26Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
本稿では,機械学習モデルの学習のための衛星画像データセットの自動生成のための設計検討を行う。
本稿では,ニューラルネットワークの深層学習と評価の観点から直面する課題について論じる。
論文 参考訳(メタデータ) (2021-04-28T15:13:12Z) - A Pipeline for Vision-Based On-Orbit Proximity Operations Using Deep
Learning and Synthetic Imagery [0.0]
現在、2つの重要な課題が、ビジョンベースの軌道近傍操作にディープラーニングを使用する際の大きな障壁となっている。
ラベル付きトレーニングデータの不足(ターゲット宇宙船のイメージ)は、堅牢なディープラーニングモデルの作成を妨げる。
本稿では、オンビットビジュアルナビゲーションアプリケーション用に特別に開発されたオープンソースのディープラーニングパイプラインについて述べる。
論文 参考訳(メタデータ) (2021-01-14T15:17:54Z) - Weakly-supervised land classification for coastal zone based on deep convolutional neural networks by incorporating dual-polarimetric characteristics into training dataset [1.0494061710470493]
本研究では, 空間偏光合成開口レーダ(PolSAR)を用いた意味的セグメンテーションにおけるDCNNの性能について検討する。
PolSARデータを用いたセマンティックセグメンテーションタスクは、SARデータの特徴とアノテート手順が考慮されている場合、弱い教師付き学習に分類することができる。
次に、SegNet、U-Net、LinkNetを含む3つのDCNNモデルが実装されている。
論文 参考訳(メタデータ) (2020-03-30T17:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。