Golden Ratio Search: A Low-Power Adversarial Attack for Deep Learning based Modulation Classification
- URL: http://arxiv.org/abs/2409.11454v1
- Date: Tue, 17 Sep 2024 17:17:54 GMT
- Title: Golden Ratio Search: A Low-Power Adversarial Attack for Deep Learning based Modulation Classification
- Authors: Deepsayan Sadhukhan, Nitin Priyadarshini Shankar, Sheetal Kalyani,
- Abstract summary: We propose a minimal power white box adversarial attack for Deep Learning based Automatic Modulation Classification (AMC)
We evaluate the efficacy of the proposed method by comparing it with existing adversarial attack approaches.
Experimental results demonstrate that the proposed attack is powerful, requires minimal power, and can be generated in less time.
- Score: 8.187445866881637
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a minimal power white box adversarial attack for Deep Learning based Automatic Modulation Classification (AMC). The proposed attack uses the Golden Ratio Search (GRS) method to find powerful attacks with minimal power. We evaluate the efficacy of the proposed method by comparing it with existing adversarial attack approaches. Additionally, we test the robustness of the proposed attack against various state-of-the-art architectures, including defense mechanisms such as adversarial training, binarization, and ensemble methods. Experimental results demonstrate that the proposed attack is powerful, requires minimal power, and can be generated in less time, significantly challenging the resilience of current AMC methods.
Related papers
- PGN: A perturbation generation network against deep reinforcement
learning [8.546103661706391]
We propose a novel generative model for creating effective adversarial examples to attack the agent.
Considering the specificity of deep reinforcement learning, we propose the action consistency ratio as a measure of stealthiness.
arXiv Detail & Related papers (2023-12-20T10:40:41Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - MIXPGD: Hybrid Adversarial Training for Speech Recognition Systems [18.01556863687433]
We propose mixPGD adversarial training method to improve robustness of the model for ASR systems.
In standard adversarial training, adversarial samples are generated by leveraging supervised or unsupervised methods.
We merge the capabilities of both supervised and unsupervised approaches in our method to generate new adversarial samples which aid in improving model robustness.
arXiv Detail & Related papers (2023-03-10T07:52:28Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Deep-Attack over the Deep Reinforcement Learning [26.272161868927004]
adversarial attack developments have made reinforcement learning more vulnerable.
We propose a reinforcement learning-based attacking framework by considering the effectiveness and stealthy spontaneously.
We also propose a new metric to evaluate the performance of the attack model in these two aspects.
arXiv Detail & Related papers (2022-05-02T10:58:19Z) - LAS-AT: Adversarial Training with Learnable Attack Strategy [82.88724890186094]
"Learnable attack strategy", dubbed LAS-AT, learns to automatically produce attack strategies to improve the model robustness.
Our framework is composed of a target network that uses AEs for training to improve robustness and a strategy network that produces attack strategies to control the AE generation.
arXiv Detail & Related papers (2022-03-13T10:21:26Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
Graph neural networks (GNNs) offer promising learning methods for graph-related tasks.
GNNs are at risk of adversarial attacks.
arXiv Detail & Related papers (2022-02-25T21:52:09Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.