論文の概要: VALO: A Versatile Anytime Framework for LiDAR-based Object Detection Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2409.11542v1
- Date: Tue, 17 Sep 2024 20:30:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 19:49:52.804170
- Title: VALO: A Versatile Anytime Framework for LiDAR-based Object Detection Deep Neural Networks
- Title(参考訳): VALO:LiDARに基づく物体検出ディープニューラルネットワークのための有能な随時フレームワーク
- Authors: Ahmet Soyyigit, Shuochao Yao, Heechul Yun,
- Abstract要約: 本研究は,LDARオブジェクト検出ディープニューラルネットワーク(DNN)における動的期限条件の適用という課題に対処する。
VALO(Versatile Anytime Algorithm for LiDAR Object Detection)は3次元LiDARオブジェクト検出DNNの任意の時間計算を可能にする新しいデータ中心のアプローチである。
本研究では,最先端の3次元LiDARオブジェクト検出ネットワーク,すなわちCenterPointとVoxelNextにVALOを実装し,その動的適応性を広範囲の時間制約に適用できることを実証する。
- 参考スコア(独自算出の注目度): 4.953750672237398
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work addresses the challenge of adapting dynamic deadline requirements for LiDAR object detection deep neural networks (DNNs). The computing latency of object detection is critically important to ensure safe and efficient navigation. However, state-of-the-art LiDAR object detection DNNs often exhibit significant latency, hindering their real-time performance on resource-constrained edge platforms. Therefore, a tradeoff between detection accuracy and latency should be dynamically managed at runtime to achieve optimum results. In this paper, we introduce VALO (Versatile Anytime algorithm for LiDAR Object detection), a novel data-centric approach that enables anytime computing of 3D LiDAR object detection DNNs. VALO employs a deadline-aware scheduler to selectively process input regions, making execution time and accuracy tradeoffs without architectural modifications. Additionally, it leverages efficient forecasting of past detection results to mitigate possible loss of accuracy due to partial processing of input. Finally, it utilizes a novel input reduction technique within its detection heads to significantly accelerate execution without sacrificing accuracy. We implement VALO on state-of-the-art 3D LiDAR object detection networks, namely CenterPoint and VoxelNext, and demonstrate its dynamic adaptability to a wide range of time constraints while achieving higher accuracy than the prior state-of-the-art. Code is available athttps://github.com/CSL-KU/VALO}{github.com/CSL-KU/VALO.
- Abstract(参考訳): この研究は、LDARオブジェクト検出ディープニューラルネットワーク(DNN)の動的デッドライン要件を適用するという課題に対処する。
オブジェクト検出の計算遅延は、安全かつ効率的なナビゲーションを保証するために極めて重要である。
しかし、最先端のLiDARオブジェクト検出DNNは、リソース制約のあるエッジプラットフォーム上でのリアルタイムパフォーマンスを妨げるため、大きな遅延を生じることが多い。
したがって、検出精度とレイテンシのトレードオフは、実行時に動的に管理して最適な結果を得る必要がある。
本稿では, VALO(Versatile Anytime Algorithm for LiDAR Object Detection)を提案する。
VALOはデッドライン対応のスケジューラを使用して入力領域を選択的に処理し、アーキテクチャの変更なしに実行時間と精度のトレードオフを行う。
さらに、過去の検出結果の効率的な予測を利用して、入力の一部処理による精度の損失を軽減している。
最後に、検出ヘッド内に新しい入力低減技術を用いて、精度を犠牲にすることなく実行を大幅に高速化する。
本研究では,最先端3次元LiDARオブジェクト検出ネットワーク,すなわちCenterPointとVoxelNextにVALOを実装し,その動的適応性を広範囲の時間制約に適用し,先行技術よりも高い精度を実現していることを示す。
コードはhttps://github.com/CSL-KU/VALO}{github.com/CSL-KU/VALOで公開されている。
関連論文リスト
- TimePillars: Temporally-Recurrent 3D LiDAR Object Detection [8.955064958311517]
TimePillarsは時間的にリカレントなオブジェクト検出パイプラインである。
時間にわたってLiDARデータの柱表現を利用する。
基礎的なビルディングブロックがいかに堅牢で効率的な結果を得るのに十分なかを示す。
論文 参考訳(メタデータ) (2023-12-22T10:25:27Z) - RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
本稿では、パケットの任意の長さのシーケンスをよりコンパクトな結合機能埋め込みに統合するために、リカレントオートエンコーダを利用するパケットレベルのネットワーク侵入検出ソリューションを提案する。
提案手法は,パケットレベルで高い検出精度で,極めて効率的かつリアルタイムな解が得られることを示す。
論文 参考訳(メタデータ) (2023-11-27T17:30:19Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
LiDARポイントクラウドからの3Dオブジェクト検出の主な課題は、ネットワークの信頼性に影響を与えることなく、リアルタイムのパフォーマンスを実現することである。
本稿では,高速な動的ボキセラライザを実装することにより,ネットワークの推論速度と精度を同時に向上するソリューションを提案する。
さらに,予測対象を分類し,偽検出対象をフィルタリングする軽量検出サブヘッドモデルを提案する。
論文 参考訳(メタデータ) (2023-01-10T16:22:04Z) - Anytime-Lidar: Deadline-aware 3D Object Detection [5.491655566898372]
スケジューリングアルゴリズムを提案する。このアルゴリズムは,コンポーネントのサブセットをインテリジェントに選択し,有効時間と高精度のトレードオフをオンザフライで行う。
我々は,最先端の3Dオブジェクト検出ネットワークであるPointPillarsにアプローチを適用し,Jetson Xavier AGXデータセットの性能評価を行った。
論文 参考訳(メタデータ) (2022-08-25T16:07:10Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Lite-FPN for Keypoint-based Monocular 3D Object Detection [18.03406686769539]
keypointベースのモノクロ3dオブジェクト検出は、非常に進歩し、高い速度精度のトレードオフを達成した。
マルチスケール機能融合を実現する軽量機能ピラミッドネットワークLite-FPNを提案します。
提案手法は,高い精度とフレームレートを同時に達成する。
論文 参考訳(メタデータ) (2021-05-01T14:44:31Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
本稿では,強化学習技術を用いたネットワーク拡張とpruning検索を組み込んだコンパイラ対応統一フレームワークを提案する。
具体的には,リカレントニューラルネットワーク(RNN)を用いて,ネットワークの強化とプルーニングの両面での統一的なスキームを自動で提供する。
提案手法は,モバイルデバイス上でのリアルタイム3次元物体検出を実現する。
論文 参考訳(メタデータ) (2020-12-26T19:41:15Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。