論文の概要: Uncertainty Decomposition and Error Margin Detection of Homodyned-K Distribution in Quantitative Ultrasound
- arxiv url: http://arxiv.org/abs/2409.11583v1
- Date: Tue, 17 Sep 2024 22:16:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 19:49:52.766386
- Title: Uncertainty Decomposition and Error Margin Detection of Homodyned-K Distribution in Quantitative Ultrasound
- Title(参考訳): 定量的超音波による均一K分布の不確かさ分解と誤差マージン検出
- Authors: Dorsa Ameri, Ali K. Z. Tehrani, Ivan M. Rosado-Mendez, Hassan Rivaz,
- Abstract要約: 定量的超音波(QUS)における均質K分布(HK分布)パラメータ推定をベイズニューラルネットワーク(BNN)を用いて最近検討した。
BNNは、精度と精度を損なうことなく、スペックル統計に基づくQUSの計算時間を著しく短縮することが示されている。
- 参考スコア(独自算出の注目度): 1.912429179274357
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Homodyned K-distribution (HK-distribution) parameter estimation in quantitative ultrasound (QUS) has been recently addressed using Bayesian Neural Networks (BNNs). BNNs have been shown to significantly reduce computational time in speckle statistics-based QUS without compromising accuracy and precision. Additionally, they provide estimates of feature uncertainty, which can guide the clinician's trust in the reported feature value. The total predictive uncertainty in Bayesian modeling can be decomposed into epistemic (uncertainty over the model parameters) and aleatoric (uncertainty inherent in the data) components. By decomposing the predictive uncertainty, we can gain insights into the factors contributing to the total uncertainty. In this study, we propose a method to compute epistemic and aleatoric uncertainties for HK-distribution parameters ($\alpha$ and $k$) estimated by a BNN, in both simulation and experimental data. In addition, we investigate the relationship between the prediction error and both uncertainties, shedding light on the interplay between these uncertainties and HK parameters errors.
- Abstract(参考訳): 定量的超音波(QUS)におけるHK分布パラメータ推定をベイズニューラルネットワーク(BNN)を用いて最近検討した。
BNNは、精度と精度を損なうことなく、スペックル統計に基づくQUSの計算時間を著しく短縮することが示されている。
さらに、彼らは、報告された特徴値に対する臨床医の信頼を導くことができる特徴不確実性の推定を提供する。
ベイズモデルにおける総予測の不確実性は、エピステミック(モデルパラメータに対する不確実性)とアレラトリック(データに固有の不確実性)に分解できる。
予測の不確実性を分解することにより、全体の不確実性に寄与する要因についての洞察を得ることができる。
本研究では,BNN が推定した HK 分布パラメータ ($\alpha$ および $k$) について,シミュレーションデータと実験データの両方で認識不確実性を計算する手法を提案する。
さらに,予測誤差と両不確かさの関係について検討し,これらの不確かさとHKパラメータとの相互作用に光を当てる。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Ensemble Neural Networks for Remaining Useful Life (RUL) Prediction [0.39287497907611874]
メンテナンス計画の中核となる部分は、健康と劣化に関する優れた予後を提供する監視システムである。
本稿では,確率論的RUL予測のためのアンサンブルニューラルネットワークを提案する。
この方法はNASAのターボファンジェットエンジンであるCMAPSSのデータセットで試験される。
論文 参考訳(メタデータ) (2023-09-21T19:38:44Z) - Looking at the posterior: accuracy and uncertainty of neural-network
predictions [0.0]
予測精度はてんかんとアレタリック不確実性の両方に依存している。
本稿では,共通不確実性に基づく手法よりも優れた新たな獲得関数を提案する。
論文 参考訳(メタデータ) (2022-11-26T16:13:32Z) - Homodyned K-distribution: parameter estimation and uncertainty
quantification using Bayesian neural networks [2.599882743586164]
Homodyned K-distribution (HK-distribution) のパラメータは、様々な散乱条件下で包絡データをモデル化できるスペックル統計である。
我々は,HK分布のパラメータを推定し,推定器の不確かさを定量化するためにベイズニューラルネットワーク(BNN)を提案する。
論文 参考訳(メタデータ) (2022-10-31T22:38:33Z) - A General Framework for quantifying Aleatoric and Epistemic uncertainty
in Graph Neural Networks [0.29494468099506893]
Graph Neural Networks(GNN)は、グラフ理論と機械学習をエレガントに統合する強力なフレームワークを提供する。
本稿では,モデル誤差と測定の不確かさからGNNの予測の不確かさを定量化する問題を考察する。
ベイジアンフレームワークにおける両源の不確実性を扱うための統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-20T05:25:40Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。