DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models
- URL: http://arxiv.org/abs/2409.11601v1
- Date: Tue, 17 Sep 2024 23:20:05 GMT
- Title: DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models
- Authors: Seth Bassetti, Brian Hutchinson, Claudia Tebaldi, Ben Kravitz,
- Abstract summary: Earth System Models (ESMs) are essential for understanding the interaction between human activities and the Earth's climate.
ESMs often limit the number of simulations that can be run, hindering the robust analysis of risks associated with extreme weather events.
We propose using diffusion models, a class of generative deep learning models, to effectively downscale ESM output from a monthly to a daily frequency.
- Score: 0.7776497736451751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Earth System Models (ESMs) are essential for understanding the interaction between human activities and the Earth's climate. However, the computational demands of ESMs often limit the number of simulations that can be run, hindering the robust analysis of risks associated with extreme weather events. While low-cost climate emulators have emerged as an alternative to emulate ESMs and enable rapid analysis of future climate, many of these emulators only provide output on at most a monthly frequency. This temporal resolution is insufficient for analyzing events that require daily characterization, such as heat waves or heavy precipitation. We propose using diffusion models, a class of generative deep learning models, to effectively downscale ESM output from a monthly to a daily frequency. Trained on a handful of ESM realizations, reflecting a wide range of radiative forcings, our DiffESM model takes monthly mean precipitation or temperature as input, and is capable of producing daily values with statistical characteristics close to ESM output. Combined with a low-cost emulator providing monthly means, this approach requires only a small fraction of the computational resources needed to run a large ensemble. We evaluate model behavior using a number of extreme metrics, showing that DiffESM closely matches the spatio-temporal behavior of the ESM output it emulates in terms of the frequency and spatial characteristics of phenomena such as heat waves, dry spells, or rainfall intensity.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Diffusion-Based Joint Temperature and Precipitation Emulation of Earth System Models [0.724847561444869]
We extend previous work that used a generative probabilistic diffusion model to emulate Earth system models (ESMs)
Our results show the outputs from our extended model closely resemble those from ESMs on various climate metrics including dry spells and hot streaks.
arXiv Detail & Related papers (2024-04-12T20:13:19Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
We introduce FaIRGP, a data-driven emulator that satisfies the physical temperature response equations of an energy balance model.
We show how FaIRGP can be used to obtain estimates of top-of-atmosphere radiative forcing.
We hope that this work will contribute to widening the adoption of data-driven methods in climate emulation.
arXiv Detail & Related papers (2023-07-14T08:43:36Z) - DiffESM: Conditional Emulation of Earth System Models with Diffusion
Models [2.1989764549743476]
A key application of Earth System Models (ESMs) is studying extreme weather events, such as heat waves or dry spells.
We show that diffusion models can effectively emulate the trends of ESMs under previously unseen climate scenarios.
arXiv Detail & Related papers (2023-04-23T17:12:33Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.