DAF-Net: A Dual-Branch Feature Decomposition Fusion Network with Domain Adaptive for Infrared and Visible Image Fusion
- URL: http://arxiv.org/abs/2409.11642v1
- Date: Wed, 18 Sep 2024 02:14:08 GMT
- Title: DAF-Net: A Dual-Branch Feature Decomposition Fusion Network with Domain Adaptive for Infrared and Visible Image Fusion
- Authors: Jian Xu, Xin He,
- Abstract summary: Infrared and visible image fusion aims to combine complementary information from both modalities to provide a more comprehensive scene understanding.
We propose a dual-branch feature decomposition fusion network (DAF-Net) with Maximum domain adaptive.
By incorporating MK-MMD, the DAF-Net effectively aligns the latent feature spaces of visible and infrared images, thereby improving the quality of the fused images.
- Score: 21.64382683858586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Infrared and visible image fusion aims to combine complementary information from both modalities to provide a more comprehensive scene understanding. However, due to the significant differences between the two modalities, preserving key features during the fusion process remains a challenge. To address this issue, we propose a dual-branch feature decomposition fusion network (DAF-Net) with domain adaptive, which introduces Multi-Kernel Maximum Mean Discrepancy (MK-MMD) into the base encoder and designs a hybrid kernel function suitable for infrared and visible image fusion. The base encoder built on the Restormer network captures global structural information while the detail encoder based on Invertible Neural Networks (INN) focuses on extracting detail texture information. By incorporating MK-MMD, the DAF-Net effectively aligns the latent feature spaces of visible and infrared images, thereby improving the quality of the fused images. Experimental results demonstrate that the proposed method outperforms existing techniques across multiple datasets, significantly enhancing both visual quality and fusion performance. The related Python code is available at https://github.com/xujian000/DAF-Net.
Related papers
- CrossFuse: A Novel Cross Attention Mechanism based Infrared and Visible Image Fusion Approach [9.253098561330978]
Cross attention mechanism (CAM) is proposed to enhance the complementary information.
Two-stage training strategy based fusion scheme is presented to generate the fused images.
Experiments show that our proposed fusion method obtains the SOTA fusion performance compared with the existing fusion networks.
arXiv Detail & Related papers (2024-06-15T09:52:42Z) - MaeFuse: Transferring Omni Features with Pretrained Masked Autoencoders for Infrared and Visible Image Fusion via Guided Training [57.18758272617101]
MaeFuse is a novel autoencoder model designed for infrared and visible image fusion (IVIF)
Our model utilizes a pretrained encoder from Masked Autoencoders (MAE), which facilities the omni features extraction for low-level reconstruction and high-level vision tasks.
MaeFuse not only introduces a novel perspective in the realm of fusion techniques but also stands out with impressive performance across various public datasets.
arXiv Detail & Related papers (2024-04-17T02:47:39Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - A Joint Convolution Auto-encoder Network for Infrared and Visible Image
Fusion [7.799758067671958]
We design a joint convolution auto-encoder (JCAE) network for infrared and visible image fusion.
Inspired by the infrared cognition ability of crotalinae animals, we design a joint convolution auto-encoder (JCAE) network for infrared and visible image fusion.
arXiv Detail & Related papers (2022-01-26T03:49:27Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.