MATCNN: Infrared and Visible Image Fusion Method Based on Multi-scale CNN with Attention Transformer
- URL: http://arxiv.org/abs/2502.01959v1
- Date: Tue, 04 Feb 2025 03:09:54 GMT
- Title: MATCNN: Infrared and Visible Image Fusion Method Based on Multi-scale CNN with Attention Transformer
- Authors: Jingjing Liu, Li Zhang, Xiaoyang Zeng, Wanquan Liu, Jianhua Zhang,
- Abstract summary: This paper proposes a novel cross-modal image fusion approach based on a multi-scale convolutional neural network with attention Transformer (MATCNN)
MATCNN utilizes the multi-scale fusion module (MSFM) to extract local features at different scales and employs the global feature extraction module (GFEM) to extract global features.
An information mask is used to label pertinent details within the images, aiming to enhance the proportion of preserving significant information in infrared images and background textures in visible images in fused images.
- Score: 21.603763071331667
- License:
- Abstract: While attention-based approaches have shown considerable progress in enhancing image fusion and addressing the challenges posed by long-range feature dependencies, their efficacy in capturing local features is compromised by the lack of diverse receptive field extraction techniques. To overcome the shortcomings of existing fusion methods in extracting multi-scale local features and preserving global features, this paper proposes a novel cross-modal image fusion approach based on a multi-scale convolutional neural network with attention Transformer (MATCNN). MATCNN utilizes the multi-scale fusion module (MSFM) to extract local features at different scales and employs the global feature extraction module (GFEM) to extract global features. Combining the two reduces the loss of detail features and improves the ability of global feature representation. Simultaneously, an information mask is used to label pertinent details within the images, aiming to enhance the proportion of preserving significant information in infrared images and background textures in visible images in fused images. Subsequently, a novel optimization algorithm is developed, leveraging the mask to guide feature extraction through the integration of content, structural similarity index measurement, and global feature loss. Quantitative and qualitative evaluations are conducted across various datasets, revealing that MATCNN effectively highlights infrared salient targets, preserves additional details in visible images, and achieves better fusion results for cross-modal images. The code of MATCNN will be available at https://github.com/zhang3849/MATCNN.git.
Related papers
- Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - MaeFuse: Transferring Omni Features with Pretrained Masked Autoencoders for Infrared and Visible Image Fusion via Guided Training [95.24751989263117]
MaeFuse is a novel autoencoder model designed for Infrared and Visible Image Fusion (IVIF)
Our model utilizes a pretrained encoder from Masked Autoencoders (MAE), which facilities the omni features extraction for low-level reconstruction and high-level vision tasks.
MaeFuse not only introduces a novel perspective in the realm of fusion techniques but also stands out with impressive performance across various public datasets.
arXiv Detail & Related papers (2024-04-17T02:47:39Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion [68.78897015832113]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-06-20T12:03:54Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Inertial Sensor Data To Image Encoding For Human Action Recognition [0.0]
Convolutional Neural Networks (CNNs) are successful deep learning models in the field of computer vision.
In this paper, we use 4 types of spatial domain methods for transforming inertial sensor data to activity images.
For creating a multimodal fusion framework, we made each type of activity images multimodal by convolving with two spatial domain filters.
arXiv Detail & Related papers (2021-05-28T01:22:52Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.