LFIC-DRASC: Deep Light Field Image Compression Using Disentangled Representation and Asymmetrical Strip Convolution
- URL: http://arxiv.org/abs/2409.11711v1
- Date: Wed, 18 Sep 2024 05:33:42 GMT
- Title: LFIC-DRASC: Deep Light Field Image Compression Using Disentangled Representation and Asymmetrical Strip Convolution
- Authors: Shiyu Feng, Yun Zhang, Linwei Zhu, Sam Kwong,
- Abstract summary: We propose an end-to-end deep LF Image Compression method using Disentangled Representation and Asymmetrical Strip Convolution.
Experimental results demonstrate that the proposed LFIC-DRASC achieves an average of 20.5% bit rate reductions.
- Score: 51.909036244222904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Light-Field (LF) image is emerging 4D data of light rays that is capable of realistically presenting spatial and angular information of 3D scene. However, the large data volume of LF images becomes the most challenging issue in real-time processing, transmission, and storage. In this paper, we propose an end-to-end deep LF Image Compression method Using Disentangled Representation and Asymmetrical Strip Convolution (LFIC-DRASC) to improve coding efficiency. Firstly, we formulate the LF image compression problem as learning a disentangled LF representation network and an image encoding-decoding network. Secondly, we propose two novel feature extractors that leverage the structural prior of LF data by integrating features across different dimensions. Meanwhile, disentangled LF representation network is proposed to enhance the LF feature disentangling and decoupling. Thirdly, we propose the LFIC-DRASC for LF image compression, where two Asymmetrical Strip Convolution (ASC) operators, i.e. horizontal and vertical, are proposed to capture long-range correlation in LF feature space. These two ASC operators can be combined with the square convolution to further decouple LF features, which enhances the model ability in representing intricate spatial relationships. Experimental results demonstrate that the proposed LFIC-DRASC achieves an average of 20.5\% bit rate reductions comparing with the state-of-the-art methods.
Related papers
- Diffusion-based Light Field Synthesis [50.24624071354433]
LFdiff is a diffusion-based generative framework tailored for LF synthesis.
We propose DistgUnet, a disentanglement-based noise estimation network, to harness comprehensive LF representations.
Extensive experiments demonstrate that LFdiff excels in synthesizing visually pleasing and disparity-controllable light fields.
arXiv Detail & Related papers (2024-02-01T13:13:16Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Physics-Informed Ensemble Representation for Light-Field Image
Super-Resolution [12.156009287223382]
We analyze the coordinate transformation of the light field (LF) imaging process to reveal the geometric relationship in the LF images.
We introduce a new LF subspace of virtual-slit images (VSI) that provide sub-pixel information complementary to sub-aperture images.
To super-resolve image structures from undersampled LF data, we propose a geometry-aware decoder, named EPIXformer.
arXiv Detail & Related papers (2023-05-31T16:27:00Z) - Real-World Light Field Image Super-Resolution via Degradation Modulation [59.68036846233918]
We propose a simple yet effective method for real-world LF image SR.
A practical LF degradation model is developed to formulate the degradation process of real LF images.
A convolutional neural network is designed to incorporate the degradation prior to the SR process.
arXiv Detail & Related papers (2022-06-13T14:44:46Z) - Disentangling Light Fields for Super-Resolution and Disparity Estimation [67.50796924758221]
Light field (LF) cameras record both intensity and directions of light rays, and encode 3D scenes into 4D LF images.
It is challenging for convolutional neural networks (CNNs) to process LF images since the spatial and angular information are highly inter-twined with varying disparities.
We propose a generic mechanism to disentangle these coupled information for LF image processing.
arXiv Detail & Related papers (2022-02-22T01:04:41Z) - Deep Selective Combinatorial Embedding and Consistency Regularization
for Light Field Super-resolution [93.95828097088608]
Light field (LF) images acquired by hand-held devices usually suffer from low spatial resolution.
The high-dimensionality characteristic and complex geometrical structure of LF images make the problem more challenging than traditional single-image SR.
We propose a novel learning-based LF spatial SR framework to explore the coherence among LF sub-aperture images.
Experimental results over both synthetic and real-world LF datasets demonstrate the significant advantage of our approach over state-of-the-art methods.
arXiv Detail & Related papers (2020-09-26T08:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.