Human-like Affective Cognition in Foundation Models
- URL: http://arxiv.org/abs/2409.11733v2
- Date: Thu, 19 Sep 2024 02:33:54 GMT
- Title: Human-like Affective Cognition in Foundation Models
- Authors: Kanishk Gandhi, Zoe Lynch, Jan-Philipp Fränken, Kayla Patterson, Sharon Wambu, Tobias Gerstenberg, Desmond C. Ong, Noah D. Goodman,
- Abstract summary: We introduce an evaluation framework for testing affective cognition in foundation models.
We generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes.
Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement.
- Score: 28.631313772625578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding emotions is fundamental to human interaction and experience. Humans easily infer emotions from situations or facial expressions, situations from emotions, and do a variety of other affective cognition. How adept is modern AI at these inferences? We introduce an evaluation framework for testing affective cognition in foundation models. Starting from psychological theory, we generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes. We evaluate the abilities of foundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across carefully selected conditions. Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement. In some conditions, models are ``superhuman'' -- they better predict modal human judgements than the average human. All models benefit from chain-of-thought reasoning. This suggests foundation models have acquired a human-like understanding of emotions and their influence on beliefs and behavior.
Related papers
- The Good, the Bad, and the Hulk-like GPT: Analyzing Emotional Decisions of Large Language Models in Cooperation and Bargaining Games [9.82711167146543]
We introduce a novel methodology to study the decision-making of Large Language Models (LLMs)
We show that emotions profoundly impact the performance of LLMs, leading to the development of more optimal strategies.
Surprisingly, emotional prompting, particularly with anger' emotion, can disrupt the "superhuman" alignment of GPT-4.
arXiv Detail & Related papers (2024-06-05T14:08:54Z) - Improved Emotional Alignment of AI and Humans: Human Ratings of Emotions Expressed by Stable Diffusion v1, DALL-E 2, and DALL-E 3 [10.76478480925475]
Generative AI systems are increasingly capable of expressing emotions via text and imagery.
We measure the alignment between emotions expressed by generative AI and human perceptions.
We show that the alignment significantly depends upon the AI model used and the emotion itself.
arXiv Detail & Related papers (2024-05-28T18:26:57Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
We show that EmotionPrompt can boost the performance of AI models while EmotionAttack can hinder it.
EmotionDecode reveals that AI models can comprehend emotional stimuli akin to the mechanism of dopamine in the human brain.
arXiv Detail & Related papers (2023-12-18T11:19:45Z) - Socratis: Are large multimodal models emotionally aware? [63.912414283486555]
Existing emotion prediction benchmarks do not consider the diversity of emotions that an image and text can elicit in humans due to various reasons.
We propose Socratis, a societal reactions benchmark, where each image-caption (IC) pair is annotated with multiple emotions and the reasons for feeling them.
We benchmark the capability of state-of-the-art multimodal large language models to generate the reasons for feeling an emotion given an IC pair.
arXiv Detail & Related papers (2023-08-31T13:59:35Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
Next-generation artificial emotional intelligence (AEI) is taking center stage to address users' desire for deeper, more meaningful human-machine interaction.
Unlike theory of emotion, which has been the historical focus in psychology, emotion models are a descriptive tools.
This work has broad implications in social robotics, human-machine interaction, mental healthcare, and computational psychology.
arXiv Detail & Related papers (2022-06-15T15:21:30Z) - Modeling Human Behavior Part I -- Learning and Belief Approaches [0.0]
We focus on techniques which learn a model or policy of behavior through exploration and feedback.
Next generation autonomous and adaptive systems will largely include AI agents and humans working together as teams.
arXiv Detail & Related papers (2022-05-13T07:33:49Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z) - CARE: Commonsense-Aware Emotional Response Generation with Latent
Concepts [42.106573635463846]
We propose CARE, a novel model for commonsense-aware emotional response generation.
We first propose a framework to learn and construct commonsense-aware emotional latent concepts of the response.
We then propose three methods to collaboratively incorporate the latent concepts into response generation.
arXiv Detail & Related papers (2020-12-15T15:47:30Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
We propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues.
Our model achieves state-of-the-art performance on most of the emotion categories.
Our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
arXiv Detail & Related papers (2020-09-21T06:10:39Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.