Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction
- URL: http://arxiv.org/abs/2409.11744v1
- Date: Wed, 18 Sep 2024 06:56:06 GMT
- Title: Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction
- Authors: Weiyan Shi, Haihong Zhang, Jin Yang, Ruiqing Ding, YongWei Zhu, Kenny Tsu Wei Choo,
- Abstract summary: We propose a novel method to automatically analyze gaze behaviors in ASD children with superior accuracy.
We first apply and optimize seven clustering algorithms to automatically group gaze points to compare ASD subjects with typically developing peers.
Lastly, using these features as prior knowledge, we train multiple predictive machine learning models to predict and diagnose ASD based on their gaze behaviors.
- Score: 9.251838958621684
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Autism Spectrum Disorder (ASD) significantly affects the social and communication abilities of children, and eye-tracking is commonly used as a diagnostic tool by identifying associated atypical gaze patterns. Traditional methods demand manual identification of Areas of Interest in gaze patterns, lowering the performance of gaze behavior analysis in ASD subjects. To tackle this limitation, we propose a novel method to automatically analyze gaze behaviors in ASD children with superior accuracy. To be specific, we first apply and optimize seven clustering algorithms to automatically group gaze points to compare ASD subjects with typically developing peers. Subsequently, we extract 63 significant features to fully describe the patterns. These features can describe correlations between ASD diagnosis and gaze patterns. Lastly, using these features as prior knowledge, we train multiple predictive machine learning models to predict and diagnose ASD based on their gaze behaviors. To evaluate our method, we apply our method to three ASD datasets. The experimental and visualization results demonstrate the improvements of clustering algorithms in the analysis of unique gaze patterns in ASD children. Additionally, these predictive machine learning models achieved state-of-the-art prediction performance ($81\%$ AUC) in the field of automatically constructed gaze point features for ASD diagnosis. Our code is available at \url{https://github.com/username/projectname}.
Related papers
- Hugging Rain Man: A Novel Facial Action Units Dataset for Analyzing Atypical Facial Expressions in Children with Autism Spectrum Disorder [2.3001245059699014]
We introduce a novel dataset, Hugging Rain Man, which includes facial action units (AUs) manually annotated by FACS experts for both children with ASD and typical development (TD)
The dataset comprises a rich collection of posed and spontaneous facial expressions, totaling approximately 130,000 frames, along with 22 AUs, 10 Action Descriptors (ADs) and atypicality ratings.
arXiv Detail & Related papers (2024-11-21T02:51:52Z) - Involution Fused ConvNet for Classifying Eye-Tracking Patterns of
Children with Autism Spectrum Disorder [1.225920962851304]
Autism Spectrum Disorder (ASD) is a complicated neurological condition which is challenging to diagnose. Numerous studies demonstrate that children diagnosed with ASD struggle with maintaining attention spans and have less focused vision.
Eye-tracking technology has drawn special attention in the context of ASD since anomalies in gaze have long been acknowledged as a defining feature of autism in general.
arXiv Detail & Related papers (2024-01-07T20:08:17Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Autism Spectrum Disorder Classification in Children based on Structural
MRI Features Extracted using Contrastive Variational Autoencoder [5.2927782596213]
Autism spectrum disorder (ASD) is a highly disabling mental disease that brings significant impairments of social interaction ability to the patients.
With the development of the machine learning and neuroimaging technology, extensive research has been conducted on machine classification of ASD based on structural MRI (s-MRI)
Few studies conduct machine classification of ASD for participants below 5-year-old, but, with mediocre predictive accuracy.
arXiv Detail & Related papers (2023-07-03T12:46:19Z) - OpenNDD: Open Set Recognition for Neurodevelopmental Disorders Detection [16.36536069562694]
We design a novel open set recognition framework for ASD-aided diagnosis (OpenNDD)
Considering the strong similarities between NDDs, we present a joint scaling method by Min-Max scaling combined with Standardization (MMS)
Our OpenNDD achieves promising performance, where the accuracy is 77.38%, AUROC is 75.53% and the open set classification rate is as high as 59.43%.
arXiv Detail & Related papers (2023-06-28T09:28:33Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
This paper proposes a sequence-to-sequence based localization framework called Temporal-sequence based Graph Attention Source Identification (TGASI) based on an inductive learning idea.
It's worth mentioning that the inductive learning idea ensures that TGASI can detect the sources in new scenarios without knowing other prior knowledge.
arXiv Detail & Related papers (2023-06-28T03:00:28Z) - Screening Autism Spectrum Disorder in childrens using Deep Learning
Approach : Evaluating the classification model of YOLOv8 by comparing with
other models [0.0]
We propose a practical solution for ASD screening using facial images using YoloV8 model.
Our model achieved a remarkable 89.64% accuracy in classification and an F1-score of 0.89.
arXiv Detail & Related papers (2023-06-25T18:02:01Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects.
We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge.
arXiv Detail & Related papers (2023-06-15T16:22:57Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
We argue that the performance of the final classifier depends on the data separation present in the latent space and visual separation present in the projection.
We demonstrate our results by the classification of five real-world challenging image datasets of human intestinal parasites with only 1% supervised samples.
arXiv Detail & Related papers (2023-02-06T10:01:38Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.