論文の概要: Knowledge Adaptation Network for Few-Shot Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2409.11770v1
- Date: Wed, 18 Sep 2024 07:51:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 18:48:44.726573
- Title: Knowledge Adaptation Network for Few-Shot Class-Incremental Learning
- Title(参考訳): Few-Shot Class-Incremental Learningのための知識適応ネットワーク
- Authors: Ye Wang, Yaxiong Wang, Guoshuai Zhao, Xueming Qian,
- Abstract要約: クラス増分学習(class-incremental learning)は、いくつかのサンプルを使用して、新しいクラスを段階的に認識することを目的としている。
この問題を解決する効果的な方法の1つは、原型進化分類器を構築することである。
新しいクラスの表現は弱で偏りがあるので、そのような戦略は準最適であると主張する。
- 参考スコア(独自算出の注目度): 23.90555521006653
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Few-shot class-incremental learning (FSCIL) aims to incrementally recognize new classes using a few samples while maintaining the performance on previously learned classes. One of the effective methods to solve this challenge is to construct prototypical evolution classifiers. Despite the advancement achieved by most existing methods, the classifier weights are simply initialized using mean features. Because representations for new classes are weak and biased, we argue such a strategy is suboptimal. In this paper, we tackle this issue from two aspects. Firstly, thanks to the development of foundation models, we employ a foundation model, the CLIP, as the network pedestal to provide a general representation for each class. Secondly, to generate a more reliable and comprehensive instance representation, we propose a Knowledge Adapter (KA) module that summarizes the data-specific knowledge from training data and fuses it into the general representation. Additionally, to tune the knowledge learned from the base classes to the upcoming classes, we propose a mechanism of Incremental Pseudo Episode Learning (IPEL) by simulating the actual FSCIL. Taken together, our proposed method, dubbed as Knowledge Adaptation Network (KANet), achieves competitive performance on a wide range of datasets, including CIFAR100, CUB200, and ImageNet-R.
- Abstract(参考訳): FSCIL(Few-shot class-incremental Learning)は、いくつかのサンプルを使用して新しいクラスを段階的に認識し、以前に学習したクラスのパフォーマンスを維持することを目的としている。
この問題を解決する効果的な方法の1つは、原型進化分類器を構築することである。
既存の手法の進歩にもかかわらず、分類器の重みは平均的特徴を用いて単純に初期化される。
新しいクラスの表現は弱で偏りがあるので、そのような戦略は準最適であると主張する。
本稿では,2つの側面からこの問題に対処する。
まず,基礎モデルの開発により,ネットワークの台座として基盤モデルであるCLIPを採用し,各クラスに汎用表現を提供する。
次に、より信頼性が高く包括的なインスタンス表現を生成するために、トレーニングデータからデータ固有の知識を要約し、汎用表現に融合する知識適応モジュールを提案する。
さらに,基本クラスから学習した知識を次のクラスに調整するために,実際のFSCILをシミュレートして,インクリメンタル擬似エピソード学習(IPEL)のメカニズムを提案する。
提案手法は,CIFAR100,CUB200,ImageNet-Rなど,幅広いデータセット上での競合性能を実現する。
関連論文リスト
- Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
分散型特徴再現(LP-DiF)を用いた学習プロンプト(Learning Prompt)という,シンプルで効果的なフレームワークを提案する。
新しいセッションでは,学習可能なプロンプトが古い知識を忘れないようにするため,擬似機能的リプレイ手法を提案する。
新しいセッションに進むと、古いクラスのディストリビューションと現在のセッションのトレーニングイメージを組み合わせて擬似フィーチャーをサンプリングして、プロンプトを最適化する。
論文 参考訳(メタデータ) (2024-01-03T07:59:17Z) - Class Incremental Learning with Self-Supervised Pre-Training and
Prototype Learning [21.901331484173944]
授業の段階的学習における破滅的忘れの原因を分析した。
固定エンコーダと漸進的に更新されたプロトタイプ分類器を備えた2段階学習フレームワークを提案する。
本手法は古いクラスを保存したサンプルに頼らず,非例ベースのCIL法である。
論文 参考訳(メタデータ) (2023-08-04T14:20:42Z) - Knowledge Transfer-Driven Few-Shot Class-Incremental Learning [23.163459923345556]
FSCIL(Few-shot class-incremental Learning)は、古いクラスを忘れずに、いくつかのサンプルを使用して新しいクラスを継続的に学習することを目的としている。
既存のFSCIL手法の進歩にもかかわらず、モデルの可塑性の最適化が不十分なため、提案手法は準最適である。
本稿では,多種多様な擬似的漸進的タスクをエージェントとして頼りにし,知識伝達を実現するランダムエピソードサンプリング・拡張(RESA)戦略を提案する。
論文 参考訳(メタデータ) (2023-06-19T14:02:45Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
CIL(Class-incremental Learning)は、少数のクラス(ベースクラス)から始まる設定で広く研究されている。
我々は、多数のベースクラスで事前訓練された強力なモデルから始まるCILの実証済み実世界の設定について検討する。
提案手法は、解析されたCIL設定すべてに頑健で一般化されている。
論文 参考訳(メタデータ) (2022-04-07T17:58:07Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
数ショット分類のための高速な最適化に基づくメタラーニング手法を提案する。
我々の戦略はメタ学習において学習すべき基礎学習者の目的の重要な側面を可能にする。
我々は、我々のアプローチの速度と効果を実証し、総合的な実験分析を行う。
論文 参考訳(メタデータ) (2020-10-01T15:59:31Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
本稿では,FSCIL問題に焦点をあてる。
FSCIL は CNN モデルに対して,学習済みのクラスを忘れることなく,ラベル付きサンプルのごく少数から新たなクラスを漸進的に学習することを求めている。
我々は,異なるクラスで形成される特徴多様体のトポロジーを学習し,保存するニューラルネットワーク(NG)ネットワークを用いて,知識を表現する。
論文 参考訳(メタデータ) (2020-04-23T03:38:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。