論文の概要: SymFace: Additional Facial Symmetry Loss for Deep Face Recognition
- arxiv url: http://arxiv.org/abs/2409.11816v1
- Date: Wed, 18 Sep 2024 09:06:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 18:34:01.699022
- Title: SymFace: Additional Facial Symmetry Loss for Deep Face Recognition
- Title(参考訳): SymFace:ディープ・フェイス認識のための追加の顔面対称性損失
- Authors: Pritesh Prakash, Koteswar Rao Jerripothula, Ashish Jacob Sam, Prinsh Kumar Singh, S Umamaheswaran,
- Abstract要約: 本研究では,顔認証問題における顔対称性の自然現象について検討する。
分割面の2つの出力埋め込みベクトルは、出力埋め込み空間において互いに近接して射影しなければならないことを示す。
この概念に触発されて、対称的な2対の分割面の埋め込みの相違に基づいて、ネットワークをペナルティ化する。
- 参考スコア(独自算出の注目度): 1.5612101323427952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past decade, there has been a steady advancement in enhancing face recognition algorithms leveraging advanced machine learning methods. The role of the loss function is pivotal in addressing face verification problems and playing a game-changing role. These loss functions have mainly explored variations among intra-class or inter-class separation. This research examines the natural phenomenon of facial symmetry in the face verification problem. The symmetry between the left and right hemi faces has been widely used in many research areas in recent decades. This paper adopts this simple approach judiciously by splitting the face image vertically into two halves. With the assumption that the natural phenomena of facial symmetry can enhance face verification methodology, we hypothesize that the two output embedding vectors of split faces must project close to each other in the output embedding space. Inspired by this concept, we penalize the network based on the disparity of embedding of the symmetrical pair of split faces. Symmetrical loss has the potential to minimize minor asymmetric features due to facial expression and lightning conditions, hence significantly increasing the inter-class variance among the classes and leading to more reliable face embedding. This loss function propels any network to outperform its baseline performance across all existing network architectures and configurations, enabling us to achieve SoTA results.
- Abstract(参考訳): 過去10年間で、高度な機械学習手法を活用した顔認識アルゴリズムの強化が着実に進んでいる。
損失関数の役割は、顔認証問題に対処し、ゲームを変える役割を演じる上で重要なものである。
これらの損失関数は、主にクラス内またはクラス間分離のバリエーションを探索してきた。
本研究では,顔認証問題における顔対称性の自然現象について検討する。
左半球と右半球の対称性は、近年、多くの研究領域で広く利用されている。
本稿では、顔画像を垂直に2つの半角に分割することで、この単純なアプローチを巧みに採用する。
顔対称性の自然現象が顔の検証方法を強化することができるという仮定により、分割された顔の2つの出力埋め込みベクトルは、出力埋め込み空間において互いに近接して射影しなければならないという仮説を立てる。
この概念に触発されて、対称的な2対の分割面の埋め込みの相違に基づいて、ネットワークをペナルティ化する。
対称的損失は、表情や雷条件による小さな非対称な特徴を最小限に抑え、クラス間のクラス間差異を著しく増加させ、より信頼性の高い顔埋め込みをもたらす可能性がある。
この損失関数は、任意のネットワークにおいて、すべての既存のネットワークアーキテクチャや構成のベースライン性能を上回る性能を保ち、SoTA結果の達成を可能にします。
関連論文リスト
- X2-Softmax: Margin Adaptive Loss Function for Face Recognition [6.497884034818003]
我々は,X2-Softmaxという新しい角マージン損失を提案する。
X2-Softmax損失は適応的な角マージンを持ち、異なるクラス間の角度が大きくなるにつれて増加するマージンを提供する。
我々は、MS1Mv3データセット上でX2-Softmax損失でニューラルネットワークをトレーニングした。
論文 参考訳(メタデータ) (2023-12-08T10:27:47Z) - End-to-end Face-swapping via Adaptive Latent Representation Learning [12.364688530047786]
本稿では,高精細・高精細・高精細・高精細・高精細な顔交換のための新しいエンドツーエンド統合フレームワークを提案する。
顔の知覚とブレンドをエンドツーエンドのトレーニングとテストのプロセスに統合することで、野生の顔に高いリアルな顔スワッピングを実現することができる。
論文 参考訳(メタデータ) (2023-03-07T19:16:20Z) - Human Face Recognition from Part of a Facial Image based on Image
Stitching [0.0]
現在の顔認識技術のほとんどは、認識される人物の完全な顔の存在を必要とする。
そこで本研究では,欠損部を画像に示す部分のフリップで縫合する工程を採用した。
ここで適用された顔認識アルゴリズムは固有顔と幾何学的手法である。
論文 参考訳(メタデータ) (2022-03-10T19:31:57Z) - A new face swap method for image and video domains: a technical report [60.47144478048589]
FaceShifterアーキテクチャに基づいた新しいフェイススワップパイプラインを導入する。
新しいアイロス機能、超解像ブロック、ガウスベースのフェイスマスク生成は、品質改善につながる。
論文 参考訳(メタデータ) (2022-02-07T10:15:50Z) - Pro-UIGAN: Progressive Face Hallucination from Occluded Thumbnails [53.080403912727604]
Inpainting Generative Adversarial Network, Pro-UIGANを提案する。
顔の形状を利用して、隠された小さな顔の補充とアップサンプリング(8*)を行う。
Pro-UIGANは、HR面を視覚的に満足させ、下流タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-08-02T02:29:24Z) - Heterogeneous Face Frontalization via Domain Agnostic Learning [74.86585699909459]
本研究では, 視覚領域における正面視を, ポーズのバリエーションで合成できるドメイン非依存学習型生成逆数ネットワーク(DAL-GAN)を提案する。
DAL-GANは、補助分類器を備えたジェネレータと、より優れた合成のために局所的およびグローバルなテクスチャ識別をキャプチャする2つの識別器から構成される。
論文 参考訳(メタデータ) (2021-07-17T20:41:41Z) - Multi-Margin based Decorrelation Learning for Heterogeneous Face
Recognition [90.26023388850771]
本稿では,超球面空間におけるデコリレーション表現を抽出するディープニューラルネットワーク手法を提案する。
提案するフレームワークは,不均一表現ネットワークとデコリレーション表現学習の2つのコンポーネントに分けることができる。
2つの難解な異種顔データベースに対する実験結果から,本手法は検証タスクと認識タスクの両方において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-05-25T07:01:12Z) - Learning Oracle Attention for High-fidelity Face Completion [121.72704525675047]
U-Net構造に基づく顔補完のための包括的フレームワークを設計する。
複数のスケールで顔のテクスチャ間の相関関係を効率よく学習する双対空間アテンションモジュールを提案する。
顔成分の位置を事前の知識として捉え,これらの領域に複数識別器を課す。
論文 参考訳(メタデータ) (2020-03-31T01:37:10Z) - Dual-Attention GAN for Large-Pose Face Frontalization [59.689836951934694]
本稿では,フォトリアリスティック顔フロンダル化のためのDA-GAN(Dual-Attention Generative Adversarial Network)を提案する。
具体的には、ローカル機能と長距離依存関係を統合するために、自己アテンションベースのジェネレータが導入された。
顔領域の局所的特徴を強調するために,新しい顔認識に基づく識別器を適用した。
論文 参考訳(メタデータ) (2020-02-17T20:00:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。