論文の概要: Agglomerative Token Clustering
- arxiv url: http://arxiv.org/abs/2409.11923v1
- Date: Wed, 18 Sep 2024 12:37:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 17:50:39.163591
- Title: Agglomerative Token Clustering
- Title(参考訳): 集約型トークンクラスタリング
- Authors: Joakim Bruslund Haurum, Sergio Escalera, Graham W. Taylor, Thomas B. Moeslund,
- Abstract要約: Agglomerative Token Clustering (ATC)は、新しいトークンマージ手法である。
ATCはすべてのタスクで最先端のパフォーマンスを達成でき、既定の最先端をオフ・ザ・シェルフで適用した場合と同等に動作させることができる。
- 参考スコア(独自算出の注目度): 61.0477253613511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Agglomerative Token Clustering (ATC), a novel token merging method that consistently outperforms previous token merging and pruning methods across image classification, image synthesis, and object detection & segmentation tasks. ATC merges clusters through bottom-up hierarchical clustering, without the introduction of extra learnable parameters. We find that ATC achieves state-of-the-art performance across all tasks, and can even perform on par with prior state-of-the-art when applied off-the-shelf, i.e. without fine-tuning. ATC is particularly effective when applied with low keep rates, where only a small fraction of tokens are kept and retaining task performance is especially difficult.
- Abstract(参考訳): 本稿では,画像分類,画像合成,オブジェクト検出・セグメンテーションタスクにまたがって,従来のトークンマージ・プルーニング手法を一貫して上回る新しいトークンマージ手法であるAgglomerative Token Clustering(ATC)を提案する。
ATCは、追加の学習可能なパラメータを導入することなく、ボトムアップ階層的なクラスタリングを通じてクラスタをマージする。
ATCはすべてのタスクで最先端のパフォーマンスを達成でき、事前の最先端に匹敵する性能、すなわち微調整なしでも性能を発揮できることがわかった。
ATCは低い保持率で適用すると特に有効であり、トークンのごく一部の保持とタスク性能の維持が特に困難である。
関連論文リスト
- Semantic Equitable Clustering: A Simple and Effective Strategy for Clustering Vision Tokens [57.37893387775829]
textbfSemantic textbfEquitable textbfClustering (SEC) という,高速かつバランスの取れたクラスタリング手法を導入する。
SECは、グローバルなセマンティックな関連性に基づいてトークンを効率的かつ直接的な方法でクラスタ化する。
視覚言語コネクタとして機能する汎用視覚バックボーンであるSECViTを提案する。
論文 参考訳(メタデータ) (2024-05-22T04:49:00Z) - CLC: Cluster Assignment via Contrastive Representation Learning [9.631532215759256]
コントラスト学習を用いてクラスタ割り当てを直接学習するコントラスト学習ベースのクラスタリング(CLC)を提案する。
完全なImageNetデータセットで53.4%の精度を実現し、既存のメソッドを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2023-06-08T07:15:13Z) - DeepCut: Unsupervised Segmentation using Graph Neural Networks
Clustering [6.447863458841379]
本研究では,従来のクラスタリング手法を置き換える軽量グラフニューラルネットワーク(GNN)を提案する。
既存の手法とは異なり、GNNはローカル画像特徴と生特徴とのペアワイズ親和性の両方を入力として取ります。
画像セグメンテーションGNNを訓練するための自己教師付き損失関数として,古典的クラスタリングの目的を定式化する方法を実証する。
論文 参考訳(メタデータ) (2022-12-12T12:31:46Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
我々は,LiDAR点雲を用いた屋外シーンのためのラベル効率のよいセマンティックセマンティックセマンティクスパイプラインを提案する。
本手法は,半弱教師付き学習を用いて,効率的なラベリング手法を設計する。
提案手法は,100%ラベル付き完全教師付き手法と比較して,さらに競争力が高い。
論文 参考訳(メタデータ) (2022-10-14T19:13:36Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
そこで我々はAuxSegNetと呼ばれる弱教師付きマルチタスク・フレームワークを提案し,サリエンシ検出とマルチラベル画像分類を補助タスクとして活用する。
同様の構造的セマンティクスに着想を得て,サリエンシとセグメンテーションの表現から,クロスタスクなグローバル画素レベルの親和性マップを学習することを提案する。
学習されたクロスタスク親和性は、両方のタスクに対して改善された擬似ラベルを提供するために、唾液度予測を洗練し、CAMマップを伝播するために使用することができる。
論文 参考訳(メタデータ) (2021-07-25T11:39:58Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。