Spin amplification in realistic systems
- URL: http://arxiv.org/abs/2409.11956v1
- Date: Wed, 18 Sep 2024 13:09:10 GMT
- Title: Spin amplification in realistic systems
- Authors: Ivan Iakoupov, Victor M. Bastidas, Yuichiro Matsuzaki, Shiro Saito, William J. Munro,
- Abstract summary: We show that spin amplification can be done in the previously unexplored regime with amplification times comparable to the timescale set by the interaction terms in the Hamiltonian.
This is an order of magnitude faster than the previous protocols and makes spin amplification possible even with significant decoherence and inhomogeneity in the spin system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin amplification is the process that ideally increases the number of excited spins if there was one excited spin to begin with. Using optimal control techniques to find classical drive pulse shapes, we show that spin amplification can be done in the previously unexplored regime with amplification times comparable to the timescale set by the interaction terms in the Hamiltonian. This is an order of magnitude faster than the previous protocols and makes spin amplification possible even with significant decoherence and inhomogeneity in the spin system. The initial spin excitation can be delocalized over the entire ensemble, which is a more typical situation when a photon is collectively absorbed by the spins. We focus on the superconducting persistent-current artificial atoms as spins, but this approach can be applied to other kinds of strongly-interacting spins, including the Rydberg atoms.
Related papers
- Spin-self-organization in an optical cavity facilitated by inhomogeneous broadening [0.0]
We study the onset of collective spin-self-organization in a thermal ensemble of driven two-level atoms confined in an optical cavity.
We find that inhomogeneous Doppler broadening facilitates the onset of spin-self-organization.
arXiv Detail & Related papers (2024-07-29T05:03:53Z) - Strong Spin-Motion Coupling in the Ultrafast Dynamics of Rydberg Atoms [0.0]
We show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wavefunction spread.
We propose a novel approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials.
arXiv Detail & Related papers (2023-11-27T07:04:02Z) - Active spin lattice hyperpolarization: Application to hexagonal boron
nitride color centers [0.0]
The active driving of the electron spin of a color center is known as a method for the hyperpolarization of the surrounding nuclear spin bath.
Here, we investigate the efficiency of this approach for various spin coupling schemes in a one-dimensional Heisenberg chain coupled to a central spin.
Our results suggest that a high degree of hyperpolarization in the boron and nitrogen nuclear spin lattices is achievable even starting from a fully thermal bath.
arXiv Detail & Related papers (2022-10-07T05:42:41Z) - Tunable itinerant spin dynamics with polar molecules [2.830197032154302]
Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field.
Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics.
arXiv Detail & Related papers (2022-08-03T16:57:36Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z) - Enhancing spin-phonon and spin-spin interactions using linear resources
in a hybrid quantum system [7.341629408181271]
Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology.
We propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon.
arXiv Detail & Related papers (2020-03-16T12:42:14Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.