"It Might be Technically Impressive, But It's Practically Useless to Us": Practices, Challenges, and Opportunities for Cross-Functional Collaboration around AI within the News Industry
- URL: http://arxiv.org/abs/2409.12000v1
- Date: Wed, 18 Sep 2024 14:12:01 GMT
- Title: "It Might be Technically Impressive, But It's Practically Useless to Us": Practices, Challenges, and Opportunities for Cross-Functional Collaboration around AI within the News Industry
- Authors: Qing Xiao, Xianzhe Fan, Felix M. Simon, Bingbing Zhang, Motahhare Eslami,
- Abstract summary: An increasing number of news organizations have integrated artificial intelligence (AI) into their operations.
This has initiated cross-functional collaborations between these professionals and journalists.
This study investigates the current practices, challenges, and opportunities for cross-functional collaboration around AI in today's news industry.
- Score: 7.568817736131254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, an increasing number of news organizations have integrated artificial intelligence (AI) into their workflows, leading to a further influx of AI technologists and data workers into the news industry. This has initiated cross-functional collaborations between these professionals and journalists. While prior research has explored the impact of AI-related roles entering the news industry, there is a lack of studies on how cross-functional collaboration unfolds between AI professionals and journalists. Through interviews with 17 journalists, 6 AI technologists, and 3 AI workers with cross-functional experience from leading news organizations, we investigate the current practices, challenges, and opportunities for cross-functional collaboration around AI in today's news industry. We first study how journalists and AI professionals perceive existing cross-collaboration strategies. We further explore the challenges of cross-functional collaboration and provide recommendations for enhancing future cross-functional collaboration around AI in the news industry.
Related papers
- The Impact of Knowledge Silos on Responsible AI Practices in Journalism [0.0]
This study aims to explore if, and if so, how knowledge silos affect the adoption of responsible AI practices in journalism.
We conducted 14 semi-structured interviews with editors, managers, and journalists at de Telegraaf, de Volkskrant, the Nederlandse Omroep Stichting, and RTL Nederland.
Our results emphasize the importance of creating better structures for sharing information on AI across all layers of news organizations.
arXiv Detail & Related papers (2024-10-02T00:27:01Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - Multi-Agent, Human-Agent and Beyond: A Survey on Cooperation in Social Dilemmas [15.785674974107204]
The study of cooperation within social dilemmas has long been a fundamental topic across various disciplines.
Recent advancements in Artificial Intelligence have significantly reshaped this field.
This survey examines three key areas at the intersection of AI and cooperation in social dilemmas.
arXiv Detail & Related papers (2024-02-27T07:31:30Z) - Investigating Practices and Opportunities for Cross-functional
Collaboration around AI Fairness in Industry Practice [10.979734542685447]
An emerging body of research indicates that ineffective cross-functional collaboration represents a major barrier to addressing issues of fairness in AI design and development.
We conducted a series of interviews and design workshops with 23 industry practitioners spanning various roles from 17 companies.
We found that practitioners engaged in bridging work to overcome frictions in understanding, contextualization, and evaluation around AI fairness across roles.
arXiv Detail & Related papers (2023-06-10T23:42:26Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
We interviewed eighteen data workers from both industry and academia to learn where and how they would like to collaborate with AI.
Surprisingly, though the participants showed excitement about collaborating with AI, many of them also expressed reluctance and pointed out nuanced reasons.
arXiv Detail & Related papers (2023-04-17T15:30:05Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - How AI Developers Overcome Communication Challenges in a
Multidisciplinary Team: A Case Study [11.633108017016985]
The development of AI applications is a multidisciplinary effort, involving multiple roles collaborating with the AI developers.
During these collaborations, there is a knowledge mismatch between AI developers, who are skilled in data science, and external stakeholders who are typically not.
This difference leads to communication gaps, and the onus falls on AI developers to explain data science concepts to their collaborators.
arXiv Detail & Related papers (2021-01-13T19:33:34Z) - Open Problems in Cooperative AI [21.303564222227727]
Research aims to study the many aspects of the problems of cooperation and to innovate in AI to contribute to solving these problems.
This research integrates ongoing work on multi-agent systems, game theory and social choice, human-machine interaction and alignment, natural-language processing, and the construction of social tools and platforms.
arXiv Detail & Related papers (2020-12-15T21:39:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.