On Vision Transformers for Classification Tasks in Side-Scan Sonar Imagery
- URL: http://arxiv.org/abs/2409.12026v1
- Date: Wed, 18 Sep 2024 14:36:50 GMT
- Title: On Vision Transformers for Classification Tasks in Side-Scan Sonar Imagery
- Authors: BW Sheffield, Jeffrey Ellen, Ben Whitmore,
- Abstract summary: Side-scan sonar (SSS) imagery presents unique challenges in the classification of man-made objects on the seafloor.
This paper rigorously compares the performance of ViT models alongside commonly used CNN architectures for binary classification tasks in SSS imagery.
ViT-based models exhibit superior classification performance across f1-score, precision, recall, and accuracy metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Side-scan sonar (SSS) imagery presents unique challenges in the classification of man-made objects on the seafloor due to the complex and varied underwater environments. Historically, experts have manually interpreted SSS images, relying on conventional machine learning techniques with hand-crafted features. While Convolutional Neural Networks (CNNs) significantly advanced automated classification in this domain, they often fall short when dealing with diverse seafloor textures, such as rocky or ripple sand bottoms, where false positive rates may increase. Recently, Vision Transformers (ViTs) have shown potential in addressing these limitations by utilizing a self-attention mechanism to capture global information in image patches, offering more flexibility in processing spatial hierarchies. This paper rigorously compares the performance of ViT models alongside commonly used CNN architectures, such as ResNet and ConvNext, for binary classification tasks in SSS imagery. The dataset encompasses diverse geographical seafloor types and is balanced between the presence and absence of man-made objects. ViT-based models exhibit superior classification performance across f1-score, precision, recall, and accuracy metrics, although at the cost of greater computational resources. CNNs, with their inductive biases, demonstrate better computational efficiency, making them suitable for deployment in resource-constrained environments like underwater vehicles. Future research directions include exploring self-supervised learning for ViTs and multi-modal fusion to further enhance performance in challenging underwater environments.
Related papers
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Improved Benthic Classification using Resolution Scaling and SymmNet
Unsupervised Domain Adaptation [8.35780131268962]
We adapt the SymmNet state-of-the-art Unsupervised Domain Adaptation method with an efficient bilinear pooling layer and image scaling to normalise spatial resolution.
The results show that generic domain adaptation can be enhanced to produce a significant increase in accuracy for images from an AUV survey that differs from the training images.
arXiv Detail & Related papers (2023-03-20T09:33:47Z) - Semantic-aware Texture-Structure Feature Collaboration for Underwater
Image Enhancement [58.075720488942125]
Underwater image enhancement has become an attractive topic as a significant technology in marine engineering and aquatic robotics.
We develop an efficient and compact enhancement network in collaboration with a high-level semantic-aware pretrained model.
We also apply the proposed algorithm to the underwater salient object detection task to reveal the favorable semantic-aware ability for high-level vision tasks.
arXiv Detail & Related papers (2022-11-19T07:50:34Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
We explore the global context learning potentials of vision transformers (ViTs) for dense visual prediction.
Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information.
We formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture.
arXiv Detail & Related papers (2022-07-19T15:49:35Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - Do Vision Transformers See Like Convolutional Neural Networks? [45.69780772718875]
Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks.
Are they acting like convolutional networks, or learning entirely different visual representations?
We find striking differences between the two architectures, such as ViT having more uniform representations across all layers.
arXiv Detail & Related papers (2021-08-19T17:27:03Z) - Exploring Vision Transformers for Fine-grained Classification [0.0]
We propose a multi-stage ViT framework for fine-grained image classification tasks, which localizes the informative image regions without requiring architectural changes.
We demonstrate the value of our approach by experimenting with four popular fine-grained benchmarks: CUB-200-2011, Stanford Cars, Stanford Dogs, and FGVC7 Plant Pathology.
arXiv Detail & Related papers (2021-06-19T23:57:31Z) - Intriguing Properties of Vision Transformers [114.28522466830374]
Vision transformers (ViT) have demonstrated impressive performance across various machine vision problems.
We systematically study this question via an extensive set of experiments and comparisons with a high-performing convolutional neural network (CNN)
We show effective features of ViTs are due to flexible receptive and dynamic fields possible via the self-attention mechanism.
arXiv Detail & Related papers (2021-05-21T17:59:18Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.