Artemis: Efficient Commit-and-Prove SNARKs for zkML
- URL: http://arxiv.org/abs/2409.12055v2
- Date: Fri, 13 Jun 2025 15:03:21 GMT
- Title: Artemis: Efficient Commit-and-Prove SNARKs for zkML
- Authors: Hidde Lycklama, Alexander Viand, Nikolay Avramov, Nicolas Küchler, Anwar Hithnawi,
- Abstract summary: This paper introduces a new Commit-and-Prove SNARK construction, Artemis, that effectively addresses the emerging challenge of commitment verification in zkML.<n>We show substantial improvements over existing methods, achieving significant reductions in prover costs and maintaining efficiency even for large-scale models.
- Score: 42.16294591171022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring that AI models are both verifiable and privacy-preserving is important for trust, accountability, and compliance. To address these concerns, recent research has focused on developing zero-knowledge machine learning (zkML) techniques that enable the verification of various aspects of ML models without revealing sensitive information. However, while recent zkML advances have made significant improvements to the efficiency of proving ML computations, they have largely overlooked the costly consistency checks on committed model parameters and input data, which have become a dominant performance bottleneck. To address this gap, this paper introduces a new Commit-and-Prove SNARK (CP-SNARK) construction, Artemis, that effectively addresses the emerging challenge of commitment verification in zkML pipelines. In contrast to existing approaches, Artemis is compatible with any homomorphic polynomial commitment, including those without trusted setup. We present the first implementation of this CP-SNARK, evaluate its performance on a diverse set of ML models, and show substantial improvements over existing methods, achieving significant reductions in prover costs and maintaining efficiency even for large-scale models. For example, for the VGG model, we reduce the overhead associated with commitment checks from 11.5x to 1.1x. Our results indicate that Artemis provides a concrete step toward practical deployment of zkML, particularly in settings involving large-scale or complex models.
Related papers
- Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought [58.321044666612174]
Vad-R1 is an end-to-end MLLM-based framework for Video Anomaly Reasoning.<n>We design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies.<n>We also propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs.
arXiv Detail & Related papers (2025-05-26T12:05:16Z) - Activation-Guided Consensus Merging for Large Language Models [25.68958388022476]
We present textbfActivation-Guided textbfConsensus textbfMerging (textbfACM), a plug-and-play merging framework that determines layer-specific merging coefficients.<n>Experiments on Long-to-Short (L2S) and general merging tasks demonstrate that ACM consistently outperforms all baseline methods.
arXiv Detail & Related papers (2025-05-20T07:04:01Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - Loss Landscape Analysis for Reliable Quantized ML Models for Scientific Sensing [41.89148096989836]
We propose a method to perform empirical analysis of the loss landscape of machine learning (ML) models.
Our method allows assessing the robustness of ML models to such effects as a function of quantization precision and under different regularization techniques.
arXiv Detail & Related papers (2025-02-12T12:30:49Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.
We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.
LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - On the Robustness of Distributed Machine Learning against Transfer Attacks [1.0787328610467801]
No prior work has examined the combined robustness stemming from distributing both the learning and the inference process.
We show that properly distributed ML instantiations achieve across-the-board improvements in accuracy-robustness tradeoffs against state-of-the-art transfer-based attacks.
arXiv Detail & Related papers (2024-12-18T17:27:17Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.
We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - Beyond Task Performance: Evaluating and Reducing the Flaws of Large
Multimodal Models with In-Context Learning [105.77733287326308]
We evaluate 10 recent open-source LMMs from 3B up to 80B parameter scale, on 5 different axes; hallucinations, abstention, compositionality, explainability and instruction following.
We explore the training-free in-context learning (ICL) as a solution, and study how it affects these limitations.
Based on our ICL study, (3) we push ICL further and propose new multimodal ICL variants such as; Multitask-ICL, Chain-of-Hindsight-ICL, and Self-Correcting-ICL.
arXiv Detail & Related papers (2023-10-01T12:02:59Z) - Towards Self-Adaptive Machine Learning-Enabled Systems Through QoS-Aware
Model Switching [1.2277343096128712]
We propose the concept of a Machine Learning Model Balancer, focusing on managing uncertainties related to ML models by using multiple models.
AdaMLS is a novel self-adaptation approach that leverages this concept and extends the traditional MAPE-K loop for continuous MLS adaptation.
Preliminary results suggest AdaMLS surpasses naive and single state-of-the-art models in guarantees.
arXiv Detail & Related papers (2023-08-19T09:33:51Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z) - ezDPS: An Efficient and Zero-Knowledge Machine Learning Inference
Pipeline [2.0813318162800707]
We propose ezDPS, a new efficient and zero-knowledge Machine Learning inference scheme.
ezDPS is a zkML pipeline in which the data is processed in multiple stages for high accuracy.
We show that ezDPS achieves one-to-three orders of magnitude more efficient than the generic circuit-based approach in all metrics.
arXiv Detail & Related papers (2022-12-11T06:47:28Z) - Scaling up Trustless DNN Inference with Zero-Knowledge Proofs [47.42532753464726]
We present the first practical ImageNet-scale method to verify ML model inference non-interactively, i.e., after the inference has been done.
We provide the first ZKSNARK proof of valid inference for a full resolution ImageNet model, achieving 79% top-5 accuracy.
arXiv Detail & Related papers (2022-10-17T00:35:38Z) - Approximate Computing and the Efficient Machine Learning Expedition [9.79841817640016]
Approximate computing (AxC) has been long accepted as a design alternative for efficient system implementation at the cost of relaxed accuracy requirements.
Despite the AxC research activities in various application domains, AxC thrived the past decade when it was applied in Machine Learning (ML)
arXiv Detail & Related papers (2022-10-02T12:10:39Z) - Building Robust Machine Learning Models for Small Chemical Science Data:
The Case of Shear Viscosity [3.4761212729163313]
We train several Machine Learning models to predict the shear viscosity of a Lennard-Jones (LJ) fluid.
Specifically, the issues related to model selection, performance estimation and uncertainty quantification were investigated.
arXiv Detail & Related papers (2022-08-23T07:33:14Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.