Fitting Multilevel Factor Models
- URL: http://arxiv.org/abs/2409.12067v2
- Date: Sun, 29 Sep 2024 20:30:42 GMT
- Title: Fitting Multilevel Factor Models
- Authors: Tetiana Parshakova, Trevor Hastie, Stephen Boyd,
- Abstract summary: We develop a novel, fast implementation of the expectation-maximization algorithm, tailored for multilevel factor models.
We show that the inverse of an invertible PSD MLR matrix is also an MLR matrix with the same sparsity in factors.
We present an algorithm that computes the Cholesky factorization of an expanded matrix with linear time and space complexities.
- Score: 41.38783926370621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine a special case of the multilevel factor model, with covariance given by multilevel low rank (MLR) matrix~\cite{parshakova2023factor}. We develop a novel, fast implementation of the expectation-maximization (EM) algorithm, tailored for multilevel factor models, to maximize the likelihood of the observed data. This method accommodates any hierarchical structure and maintains linear time and storage complexities per iteration. This is achieved through a new efficient technique for computing the inverse of the positive definite MLR matrix. We show that the inverse of an invertible PSD MLR matrix is also an MLR matrix with the same sparsity in factors, and we use the recursive Sherman-Morrison-Woodbury matrix identity to obtain the factors of the inverse. Additionally, we present an algorithm that computes the Cholesky factorization of an expanded matrix with linear time and space complexities, yielding the covariance matrix as its Schur complement. This paper is accompanied by an open-source package that implements the proposed methods.
Related papers
- Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
We study matrix estimation problems arising in reinforcement learning (RL) with low-rank structure.
In low-rank bandits, the matrix to be recovered specifies the expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it may for example characterize the transition kernel of the MDP.
We show that simple spectral-based matrix estimation approaches efficiently recover the singular subspaces of the matrix and exhibit nearly-minimal entry-wise error.
arXiv Detail & Related papers (2023-10-10T17:06:41Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification.
We will test our approach on several datasets and several subjects using the MOABB framework.
arXiv Detail & Related papers (2023-02-09T09:04:25Z) - Learning idempotent representation for subspace clustering [7.6275971668447]
An ideal reconstruction coefficient matrix should have two properties: 1) it is block diagonal with each block indicating a subspace; 2) each block is fully connected.
We devise an idempotent representation (IDR) algorithm to pursue reconstruction coefficient matrices approximating normalized membership matrices.
Experiments conducted on both synthetic and real world datasets prove that IDR is an effective and efficient subspace clustering algorithm.
arXiv Detail & Related papers (2022-07-29T01:39:25Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Dictionary-based Low-Rank Approximations and the Mixed Sparse Coding
problem [7.132368785057316]
I show how to adapt an efficient MSC solver based on the LASSO to compute Dictionary-based Matrix Factorization and Canonical Polyadic Decomposition.
I show how to adapt an efficient MSC solver based on the LASSO to compute Dictionary-based Matrix Factorization and Canonical Polyadic Decomposition in the context of hyperspectral image processing and chemometrics.
arXiv Detail & Related papers (2021-11-24T10:32:48Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.