Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
- URL: http://arxiv.org/abs/2409.12117v1
- Date: Wed, 18 Sep 2024 16:39:10 GMT
- Title: Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
- Authors: Edresson Casanova, Ryan Langman, Paarth Neekhara, Shehzeen Hussain, Jason Li, Subhankar Ghosh, Ante Jukić, Sang-gil Lee,
- Abstract summary: We present the Low Frame-rate Speech Codec (LFSC): a neural audio that leverages a finite scalar quantization and adversarial training with large speech language models to achieve high-quality audio compression with a 1.89 kbps and 21.5 frames per second.
We demonstrate that our novel LLM can make the inference of text-to-speech models around three times faster while improving intelligibility and producing quality comparable to previous models.
- Score: 10.909997817643905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modeling techniques to audio data. However, audio codecs often operate at high frame rates, resulting in slow training and inference, especially for autoregressive models. To address this challenge, we present the Low Frame-rate Speech Codec (LFSC): a neural audio codec that leverages finite scalar quantization and adversarial training with large speech language models to achieve high-quality audio compression with a 1.89 kbps bitrate and 21.5 frames per second. We demonstrate that our novel codec can make the inference of LLM-based text-to-speech models around three times faster while improving intelligibility and producing quality comparable to previous models.
Related papers
- LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec [14.7377193484733]
We propose LSCodec, a discrete speech that has both low and speaker decoupling ability.
By reconstruction experiments, LSCodec demonstrates superior intelligibility and audio quality with only a single codebook and smaller vocabulary size than baselines.
arXiv Detail & Related papers (2024-10-21T08:23:31Z) - Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model [36.61105228468503]
X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization stage.
X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications.
Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation.
arXiv Detail & Related papers (2024-08-30T10:24:07Z) - SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound [40.810505707522324]
SemantiCodec is designed to compress audio into fewer than a hundred tokens per second across diverse audio types.
We show that SemantiCodec significantly outperforms the state-of-the-art Descript on reconstruction quality.
Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs.
arXiv Detail & Related papers (2024-04-30T22:51:36Z) - LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT [65.69648099999439]
Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks.
We propose LauraGPT, a novel unified audio-and-text GPT-based LLM for audio recognition, understanding, and generation.
arXiv Detail & Related papers (2023-10-07T03:17:59Z) - FunCodec: A Fundamental, Reproducible and Integrable Open-source Toolkit
for Neural Speech Codec [55.95078490630001]
This paper presents FunCodec, a fundamental neural speech toolkit, which is an extension of the open-source speech processing toolkit FunASR.
FunCodec provides reproducible training recipes and inference scripts for the latest neural speech models, such as SoundStream and Encodec.
Along with FunCodec, pre-trained models are also provided, which can be used for academic or generalized purposes.
arXiv Detail & Related papers (2023-09-14T03:18:24Z) - SoundStorm: Efficient Parallel Audio Generation [27.121920017380273]
We present SoundStorm, a model for efficient, non-autoregressive audio generation.
SoundStorm receives as semantic tokens of AudioLM, and relies on bidirectional attention and confidence-based parallel decoding.
We demonstrate the ability of our model to scale audio generation to longer sequences by synthesizing high-quality, natural dialogue segments.
arXiv Detail & Related papers (2023-05-16T17:41:25Z) - AudioLM: a Language Modeling Approach to Audio Generation [59.19364975706805]
We introduce AudioLM, a framework for high-quality audio generation with long-term consistency.
We show how existing audio tokenizers provide different trade-offs between reconstruction quality and long-term structure.
We demonstrate how our approach extends beyond speech by generating coherent piano music continuations.
arXiv Detail & Related papers (2022-09-07T13:40:08Z) - FastLTS: Non-Autoregressive End-to-End Unconstrained Lip-to-Speech
Synthesis [77.06890315052563]
We propose FastLTS, a non-autoregressive end-to-end model which can directly synthesize high-quality speech audios from unconstrained talking videos with low latency.
Experiments show that our model achieves $19.76times$ speedup for audio generation compared with the current autoregressive model on input sequences of 3 seconds.
arXiv Detail & Related papers (2022-07-08T10:10:39Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
We introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes.
The proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training.
arXiv Detail & Related papers (2022-03-31T15:33:56Z) - SoundStream: An End-to-End Neural Audio Codec [78.94923131038682]
We present SoundStream, a novel neural audio system that can efficiently compress speech, music and general audio.
SoundStream relies on a fully convolutional encoder/decoder network and a residual vector quantizer, which are trained jointly end-to-end.
We are able to perform joint compression and enhancement either at the encoder or at the decoder side with no additional latency.
arXiv Detail & Related papers (2021-07-07T15:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.