HH-Codec: High Compression High-fidelity Discrete Neural Codec for Spoken Language Modeling
- URL: http://arxiv.org/abs/2507.18897v1
- Date: Fri, 25 Jul 2025 02:44:30 GMT
- Title: HH-Codec: High Compression High-fidelity Discrete Neural Codec for Spoken Language Modeling
- Authors: Rongkun Xue, Yazhe Niu, Shuai Hu, Zixin Yin, Yongqiang Yao, Jing Yang,
- Abstract summary: We introduce HH-Codec, a neural codecs that achieves extreme compression at 24 tokens per second for 24 kHz audio.<n>Our approach involves a carefully designed Vector Quantization space for Spoken Language Modeling, optimizing compression efficiency while minimizing information loss.<n> HH-Codec achieves state-of-the-art performance in speech reconstruction with an ultra-low bandwidth of 0.3 kbps.
- Score: 6.313337261965531
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Discrete speech tokenization is a fundamental component in speech codecs. However, in large-scale speech-to-speech systems, the complexity of parallel streams from multiple quantizers and the computational cost of high-time-dimensional codecs pose significant challenges. In this paper, we introduce HH-Codec, a neural codec that achieves extreme compression at 24 tokens per second for 24 kHz audio while relying on single-quantizer inference. Our approach involves a carefully designed Vector Quantization space for Spoken Language Modeling, optimizing compression efficiency while minimizing information loss. Building on this, we propose an asymmetric encoder-decoder architecture (Audio-VQ-Mel-Audio) that leverages dual supervision and progressive training to enhance reconstruction stability and fidelity. HH-Codec achieves state-of-the-art performance in speech reconstruction with an ultra-low bandwidth of 0.3 kbps. We further evaluate its effectiveness in codebook utilization and generative model adaptation, with extensive ablations validating the necessity of each module. HH-Codec is available at https://github.com/opendilab/HH-Codec.
Related papers
- SecoustiCodec: Cross-Modal Aligned Streaming Single-Codecbook Speech Codec [83.61175662066364]
Speech codecs serve as a crucial bridge in unifying speech and text language models.<n>Existing methods face several challenges in semantic encoding.<n>We propose SecoustiCodec, a cross-modal aligned low-bitrate streaming speech codecs.
arXiv Detail & Related papers (2025-08-04T19:22:14Z) - One Quantizer is Enough: Toward a Lightweight Audio Codec [10.903708510237875]
We present SQCodec, a lightweight neural audio that leverages a single quantizer to address limitations of existing approaches.<n> SQCodec explores streamlined convolutional networks and local Transformer modules, alongside TConv.<n>Experiments show that SQCodec audio quality comparable to multi-quantizer achieves baselines, while its single-quantizer design offers enhanced adaptability.
arXiv Detail & Related papers (2025-04-07T11:34:39Z) - FocalCodec: Low-Bitrate Speech Coding via Focal Modulation Networks [12.446324804274628]
FocalCodec is an efficient low-bitrate based on focal modulation that utilizes a single binary codebook to compress speech.<n>Demo samples, code and checkpoints are available at https://lucadellalib.io/focalcodec-web/.
arXiv Detail & Related papers (2025-02-06T19:24:50Z) - LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec [14.7377193484733]
We propose LSCodec, a discrete speech that has both low and speaker decoupling ability.<n>By reconstruction evaluations, LSCodec demonstrates superior intelligibility and audio quality with only a single codebook and smaller vocabulary size than baselines.
arXiv Detail & Related papers (2024-10-21T08:23:31Z) - Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference [10.909997817643905]
We present the Low Frame-rate Speech Codec (LFSC): a neural audio that leverages a finite scalar quantization and adversarial training with large speech language models to achieve high-quality audio compression with a 1.89 kbps and 21.5 frames per second.
We demonstrate that our novel LLM can make the inference of text-to-speech models around three times faster while improving intelligibility and producing quality comparable to previous models.
arXiv Detail & Related papers (2024-09-18T16:39:10Z) - CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction [61.067153685104394]
Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech.
It still suffers from low speaker similarity and poor prosody naturalness.
We propose a multi-modal DSR model by leveraging neural language modeling to improve the reconstruction results.
arXiv Detail & Related papers (2024-06-12T15:42:21Z) - FunCodec: A Fundamental, Reproducible and Integrable Open-source Toolkit
for Neural Speech Codec [55.95078490630001]
This paper presents FunCodec, a fundamental neural speech toolkit, which is an extension of the open-source speech processing toolkit FunASR.
FunCodec provides reproducible training recipes and inference scripts for the latest neural speech models, such as SoundStream and Encodec.
Along with FunCodec, pre-trained models are also provided, which can be used for academic or generalized purposes.
arXiv Detail & Related papers (2023-09-14T03:18:24Z) - RepCodec: A Speech Representation Codec for Speech Tokenization [21.60885344868044]
RepCodec is a novel representation for semantic speech tokenization.
We show that RepCodec significantly outperforms the widely used k-means clustering approach in both speech understanding and generation.
arXiv Detail & Related papers (2023-08-31T23:26:10Z) - High Fidelity Neural Audio Compression [92.4812002532009]
We introduce a state-of-the-art real-time, high-fidelity, audio leveraging neural networks.
It consists in a streaming encoder-decoder architecture with quantized latent space trained in an end-to-end fashion.
We simplify and speed-up the training by using a single multiscale spectrogram adversary.
arXiv Detail & Related papers (2022-10-24T17:52:02Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
We introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes.
The proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training.
arXiv Detail & Related papers (2022-03-31T15:33:56Z) - SoundStream: An End-to-End Neural Audio Codec [78.94923131038682]
We present SoundStream, a novel neural audio system that can efficiently compress speech, music and general audio.
SoundStream relies on a fully convolutional encoder/decoder network and a residual vector quantizer, which are trained jointly end-to-end.
We are able to perform joint compression and enhancement either at the encoder or at the decoder side with no additional latency.
arXiv Detail & Related papers (2021-07-07T15:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.