論文の概要: Finetuning Language Models to Emit Linguistic Expressions of Uncertainty
- arxiv url: http://arxiv.org/abs/2409.12180v1
- Date: Wed, 18 Sep 2024 17:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 16:21:44.882840
- Title: Finetuning Language Models to Emit Linguistic Expressions of Uncertainty
- Title(参考訳): 不確かさの言語表現を省略する言語モデル
- Authors: Arslan Chaudhry, Sridhar Thiagarajan, Dilan Gorur,
- Abstract要約: 大規模言語モデル(LLM)は情報検索や意思決定のタスクにますます採用されている。
LLMは現実世界の事実と矛盾する情報を生成する傾向があり、その説得的なスタイルはこれらの不正確さを自信と説得力に見せかける。
本研究では,不確実性の言語表現を生成するモデルを開発する手法として,不確実性拡張予測の教師付き微調整について検討する。
- 参考スコア(独自算出の注目度): 5.591074369497796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly employed in information-seeking and decision-making tasks. Despite their broad utility, LLMs tend to generate information that conflicts with real-world facts, and their persuasive style can make these inaccuracies appear confident and convincing. As a result, end-users struggle to consistently align the confidence expressed by LLMs with the accuracy of their predictions, often leading to either blind trust in all outputs or a complete disregard for their reliability. In this work, we explore supervised finetuning on uncertainty-augmented predictions as a method to develop models that produce linguistic expressions of uncertainty. Specifically, we measure the calibration of pre-trained models and then fine-tune language models to generate calibrated linguistic expressions of uncertainty. Through experiments on various question-answering datasets, we demonstrate that LLMs are well-calibrated in assessing their predictions, and supervised finetuning based on the model's own confidence leads to well-calibrated expressions of uncertainty, particularly for single-claim answers.
- Abstract(参考訳): 大規模言語モデル(LLM)は情報検索や意思決定のタスクにますます採用されている。
幅広い実用性にもかかわらず、LLMは現実世界の事実と矛盾する情報を生成する傾向にあり、その説得的なスタイルはこれらの不正確さを自信と説得力に見せかける。
その結果、エンドユーザはLSMによって表現される信頼と予測の正確さを一貫して整合させることに苦慮し、多くの場合、すべてのアウトプットに対する盲目な信頼またはその信頼性を完全に無視する。
本研究では,不確実性の言語表現を生成するモデルを開発する手法として,不確実性拡張予測の教師付き微調整について検討する。
具体的には、事前訓練されたモデルと微調整された言語モデルの校正を計測し、不確実性の校正された言語表現を生成する。
様々な質問応答データセットの実験を通して、LLMは予測を評価するのに十分な校正がなされており、モデル自体の信頼度に基づいて微調整を監督することは、不確実性、特に単文の回答に対して、よく校正された表現をもたらすことを実証する。
関連論文リスト
- On Uncertainty In Natural Language Processing [2.5076643086429993]
この論文は、自然言語処理における不確実性が言語的、統計的、神経的な観点からどのように特徴づけられるかを研究する。
本研究では,非交換不能な共形予測に基づく自然言語生成における校正サンプリング手法を提案する。
最後に,補助予測器を用いた大規模ブラックボックス言語モデルの信頼性の定量化手法を開発した。
論文 参考訳(メタデータ) (2024-10-04T14:08:02Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
正解と誤解の小さなデータセットを微調整すると、高い一般化と計算オーバーヘッドの少ない不確実性推定が得られることを示す。
また,確実な不確実性推定を可能にする機構についても検討し,多くのモデルを汎用的不確実性推定器として利用することができることを示した。
論文 参考訳(メタデータ) (2024-06-12T16:41:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT は、信頼目標を設定し、テキスト入力と出力のみに基づいて LLM の信頼度を予測する追加モデルを訓練する手法である。
概念的には単純で、出力以上のターゲットモデルへのアクセスを必要とせず、言語生成に干渉せず、多くの潜在的な使用法を持っている。
閉書質問応答における白箱と黒箱のLCMの校正誤差を考慮し,誤ったLCMの解答を検出する方法として,本手法の競合性を示す。
論文 参考訳(メタデータ) (2024-03-09T17:46:24Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Distinguishing the Knowable from the Unknowable with Language Models [15.471748481627143]
地中真理確率の欠如において、与えられた不確実性を解き放つために、より大きなモデルが地中真理の代用として現れるような設定を探索する。
凍結, 事前訓練されたモデルの埋め込みを訓練した小さな線形プローブが, トークンレベルでより大きなモデルがより自信を持つようになる時期を正確に予測することを示した。
我々は,同じタスクにおいて非自明な精度を実現する,完全に教師なしの手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:22:49Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Quantifying Uncertainty in Natural Language Explanations of Large
Language Models [29.34960984639281]
大規模言語モデル (LLM) は、高スループット自然言語処理 (NLP) アプリケーションのための強力なツールとして、ますます使われている。
生成された説明の不確かさを定量化するために、$textitVerbalized Uncertainty$と$textitProbing Uncertainty$という2つの新しいメトリクスを提案します。
ベンチマークデータセットの実証分析により、言語化された不確実性は説明の信頼性の信頼できる見積りではないことが判明した。
論文 参考訳(メタデータ) (2023-11-06T21:14:40Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
大規模言語モデル(LLM)の急速な開発は、多くの機会を提供するだけでなく、重要な課題も提示している。
既存のアライメント手法は、人間による注釈付き、欠陥のない命令応答ペアを利用することで、LLMを好ましい結果に導くのが一般的である。
本研究は誤り解析に基づく新しいアライメント手法を提案する。ミスの原因と回避方法を学習するために,LLMを誤った内容に故意に公開する手法である。
論文 参考訳(メタデータ) (2023-10-16T14:59:10Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。