論文の概要: LMT-Net: Lane Model Transformer Network for Automated HD Mapping from Sparse Vehicle Observations
- arxiv url: http://arxiv.org/abs/2409.12409v1
- Date: Thu, 19 Sep 2024 02:14:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:03:37.750831
- Title: LMT-Net: Lane Model Transformer Network for Automated HD Mapping from Sparse Vehicle Observations
- Title(参考訳): LMT-Net:Sparse Vehicle 観測による自動HDマッピングのためのレーンモデル変圧器ネットワーク
- Authors: Michael Mink, Thomas Monninger, Steffen Staab,
- Abstract要約: Lane Model Transformer Network (LMT-Net) は、エンコーダとデコーダのニューラルネットワークアーキテクチャであり、ポリリン符号化を実行し、レーンペアとその接続性を予測する。
我々は、複数の車両観測と、地上真実(GT)としての人間のアノテーションからなる内部データセット上でのLMT-Netの性能を評価する。
- 参考スコア(独自算出の注目度): 11.395749549636868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, High Definition (HD) maps provide a complete lane model that is not limited by sensor range and occlusions. However, the generation and upkeep of HD maps involves periodic data collection and human annotations, limiting scalability. To address this, we investigate automating the lane model generation and the use of sparse vehicle observations instead of dense sensor measurements. For our approach, a pre-processing step generates polylines by aligning and aggregating observed lane boundaries. Aligned driven traces are used as starting points for predicting lane pairs defined by the left and right boundary points. We propose Lane Model Transformer Network (LMT-Net), an encoder-decoder neural network architecture that performs polyline encoding and predicts lane pairs and their connectivity. A lane graph is formed by using predicted lane pairs as nodes and predicted lane connectivity as edges. We evaluate the performance of LMT-Net on an internal dataset that consists of multiple vehicle observations as well as human annotations as Ground Truth (GT). The evaluation shows promising results and demonstrates superior performance compared to the implemented baseline on both highway and non-highway Operational Design Domain (ODD).
- Abstract(参考訳): 自律運転においては、高定義(HD)写像は、センサー範囲と閉塞によって制限されない完全な車線モデルを提供する。
しかし、HDマップの生成とアップキープには、周期的なデータ収集とヒューマンアノテーションが含まれており、スケーラビリティが制限されている。
そこで本研究では,高密度センサではなく,車線モデル生成の自動化とスパース車両観測の利用について検討する。
提案手法では, 前処理工程で観測された車線境界を調整・集約することでポリラインを生成する。
配向された駆動トレースは、左境界点と右境界点によって定義される車線対を予測する出発点として使用される。
本稿では,エンコーダとデコーダのニューラルネットワークアーキテクチャであるLane Model Transformer Network (LMT-Net)を提案する。
予測レーンペアをノードとして、予測レーン接続をエッジとして、レーングラフを形成する。
我々は、複数の車両観測と、GT(Garth Truth)としての人間のアノテーションからなる内部データセット上でのLMT-Netの性能を評価する。
本評価は,ハイウェイおよび非ハイウェイ運転設計領域(ODD)の実施ベースラインと比較して,有望な結果を示し,優れた性能を示す。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - LaneSegNet: Map Learning with Lane Segment Perception for Autonomous
Driving [60.55208681215818]
道路構造の完全な表現を得るために,レーンセグメントを生成する最初のエンドツーエンドマッピングネットワークであるLaneSegNetを紹介した。
提案アルゴリズムは2つの重要な修正点を特徴としている。1つは、長距離特徴空間内の重要な領域の詳細をキャプチャするレーンアテンションモジュールである。
OpenLane-V2データセットでは、LaneSegNetは3つのタスクにまたがって大幅に向上している。
論文 参考訳(メタデータ) (2023-12-26T16:22:10Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
我々は、視線データを用いて、運転者の車両のエゴ軌道を推定することに集中する。
次に、GPSとビデオ入力と視線データを組み合わせた新しいマルチモーダルエゴ軌道予測ネットワークであるG-MEMPを開発する。
その結果,G-MEMPは両ベンチマークにおいて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-12-13T23:06:30Z) - Prior Based Online Lane Graph Extraction from Single Onboard Camera
Image [133.68032636906133]
単眼カメラ画像からレーングラフをオンラインに推定する。
前者は、トランスフォーマーベースのWasserstein Autoencoderを通じてデータセットから抽出される。
オートエンコーダは、最初のレーングラフ推定を強化するために使用される。
論文 参考訳(メタデータ) (2023-07-25T08:58:26Z) - Inverting the Fundamental Diagram and Forecasting Boundary Conditions:
How Machine Learning Can Improve Macroscopic Models for Traffic Flow [0.0]
高速道路を走行する車両のフラックスと速度のデータを,固定センサで収集し,車線および車種別に分類したデータセットについて検討する。
1) 渋滞がセンサの下に現れる場合, 2) 今後センサの下に通過する車両の総量を推定する。
これらの情報片は、センサ間のトラフィックフローのダイナミクスを記述したLWRベースの1次1次マルチクラスモデルの精度を向上させるために使用される。
論文 参考訳(メタデータ) (2023-03-21T11:07:19Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
本稿では,エンド・ツー・エンドとマルチタスクの学習方法を用いて学習した新しいディープラーニングモデルを提案する。
このモデルは,CARLAシミュレータ上で,現実の環境を模倣するために,通常の状況と異なる天候のシナリオを用いて評価する。
論文 参考訳(メタデータ) (2022-04-12T03:57:01Z) - Lane Graph Estimation for Scene Understanding in Urban Driving [34.82775302794312]
鳥眼視画像から車線形状を推定する新しい手法を提案する。
人気のあるnuscenesデータセットから処理されたマルチモーダルバードズ・アイビューデータに基づくグラフ推定モデルをトレーニングする。
私達のモデルは最も評価される都市場面のための有望な性能を示し、自動運転のためのHD車線アノテーションの自動生成のステップとして役立つことができます。
論文 参考訳(メタデータ) (2021-05-01T08:38:18Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
我々は、分岐とマージによるトポロジー変化を含む多くのレーンを持つ複雑な高速道路のレーン境界を描くことに集中する。
グラフのノードがレーン境界の局所領域の幾何学的および位相的特性を符号化する有向非巡回グラフィカルモデル(DAG)における推論として問題を定式化する。
2つの異なる州における2つの幹線道路における我々のアプローチの有効性を示し、高い精度とリコールと89%の正しいトポロジーを示す。
論文 参考訳(メタデータ) (2020-12-22T21:58:57Z) - RONELD: Robust Neural Network Output Enhancement for Active Lane
Detection [1.3965477771846408]
最近の最先端車線検出アルゴリズムは、畳み込みニューラルネットワーク(CNN)を用いてディープラーニングモデルを訓練している。
アクティブレーン検出(RONELD)のための実時間ロバストニューラルネットワーク出力向上手法を提案する。
RONELDの精度は最大2倍に向上した。
論文 参考訳(メタデータ) (2020-10-19T14:22:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。