論文の概要: Learning Multi-Manifold Embedding for Out-Of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2409.12479v1
- Date: Thu, 19 Sep 2024 05:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:41:29.234063
- Title: Learning Multi-Manifold Embedding for Out-Of-Distribution Detection
- Title(参考訳): 外部分布検出のための多次元埋め込み学習
- Authors: Jeng-Lin Li, Ming-Ching Chang, Wei-Chao Chen,
- Abstract要約: オフ・オブ・ディストリビューション(OOD)サンプルは、現実世界のアプリケーションにおいて信頼できるAIにとって不可欠である。
本稿では,OOD検出の強化を目的としたMMEL(Multi-Manifold Embedding Learning)フレームワークを提案する。
MMELは代表埋め込みを生成し、OODサンプルの識別にプロトタイプ認識スコアリング機能を利用する。
- 参考スコア(独自算出の注目度): 16.283293167689948
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Detecting out-of-distribution (OOD) samples is crucial for trustworthy AI in real-world applications. Leveraging recent advances in representation learning and latent embeddings, Various scoring algorithms estimate distributions beyond the training data. However, a single embedding space falls short in characterizing in-distribution data and defending against diverse OOD conditions. This paper introduces a novel Multi-Manifold Embedding Learning (MMEL) framework, optimizing hypersphere and hyperbolic spaces jointly for enhanced OOD detection. MMEL generates representative embeddings and employs a prototype-aware scoring function to differentiate OOD samples. It operates with very few OOD samples and requires no model retraining. Experiments on six open datasets demonstrate MMEL's significant reduction in FPR while maintaining a high AUC compared to state-of-the-art distance-based OOD detection methods. We analyze the effects of learning multiple manifolds and visualize OOD score distributions across datasets. Notably, enrolling ten OOD samples without retraining achieves comparable FPR and AUC to modern outlier exposure methods using 80 million outlier samples for model training.
- Abstract(参考訳): 現実世界のアプリケーションにおいて、信頼に値するAIには、OOD(out-of-distriion)サンプルの検出が不可欠である。
表現学習と潜伏埋め込みの最近の進歩を活用して、様々なスコアリングアルゴリズムは、トレーニングデータを超えた分布を推定する。
しかし、単一の埋め込み空間は、分配データの特徴付けと多様なOOD条件に対する防御において不足する。
本稿では,多次元埋め込み学習(MMEL, Multi-Manifold Embedding Learning)フレームワークを提案する。
MMELは代表埋め込みを生成し、OODサンプルの識別にプロトタイプ認識スコアリング機能を利用する。
非常に少数のOODサンプルで動作し、モデルの再トレーニングを必要としない。
6つのオープンデータセットの実験は、最先端の距離ベースOOD検出法と比較して高いAUCを維持しながら、MMELのFPRの大幅な削減を実証している。
複数の多様体を学習し、データセット間のOODスコア分布を可視化する効果を解析する。
特に、リトレーニングなしで10個のOODサンプルを登録すると、モデルトレーニングに8000万のアウトレイラサンプルを使用して、現代のアウトレイラ露光法に匹敵するFPRとAUCが得られる。
関連論文リスト
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure [0.0]
Denoising Diffusion Probabilistic Models (DDPM) を用いたOODデータ生成のためのラベル混合手法を提案する。
実験の結果,メトリック学習に基づく損失関数はソフトマックスよりも優れていた。
提案手法は従来のOOD検出指標において高いベースラインを達成している。
論文 参考訳(メタデータ) (2024-05-01T16:58:22Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-Distribution(OOD)検出は、現実のアプリケーションに信頼性の高い機械学習モデルをデプロイするために重要である。
近年, 外部曝露によるOOD検出に有意な結果が得られた。
本稿では,補助外乱量に基づく情報外挿による効果的なOOD検出のための新しい枠組み,すなわちDivOE(Diversified Outlier Exposure)を提案する。
論文 参考訳(メタデータ) (2023-10-21T07:16:09Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Towards Robust Visual Question Answering: Making the Most of Biased
Samples via Contrastive Learning [54.61762276179205]
我々は,ビザドサンプルを最大限に活用することで,ロバストなVQAモデルを構築するための新しいコントラスト学習手法 MMBS を提案する。
具体的には、元のトレーニングサンプルからスプリアス相関に関連する情報を排除し、比較学習のための正のサンプルを構築する。
我々は,OODデータセットのVQA-CP v2において,IDデータセットのVQA v2上での堅牢なパフォーマンスを維持しながら,競争性能を達成することで,コントリビューションを検証した。
論文 参考訳(メタデータ) (2022-10-10T11:05:21Z) - A Simple Test-Time Method for Out-of-Distribution Detection [45.11199798139358]
本稿では,OOD検出のための簡易なテスト時間線形訓練法を提案する。
分布外である入力画像の確率は、ニューラルネットワークが抽出した特徴と驚くほど線形に相関していることがわかった。
本稿では,提案手法のオンライン版を提案し,実世界のアプリケーションでより実用的な性能を実現する。
論文 参考訳(メタデータ) (2022-07-17T16:02:58Z) - Energy-bounded Learning for Robust Models of Code [16.592638312365164]
プログラミングでは、コード表現の学習には、コード分類、コード検索、コメント生成、バグ予測など、さまざまなアプリケーションがある。
本稿では,ソースコードモデルのトレーニングプロセスにこれらのアウト・オブ・ディストリビューション・サンプルを組み込むため,エネルギー境界学習目標関数を用いて,イン・ディストリビューション・サンプルにより高いスコアを割り当て,アウト・オブ・ディストリビューション・サンプルに低いスコアを割り当てることを提案する。
論文 参考訳(メタデータ) (2021-12-20T06:28:56Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
ディープ・ニューラル・ネットワークに基づく分類器のトレーニングデータは、通常同じ分布からサンプリングされる。
トレーニングサンプルから遠く離れた分布からテストサンプルの一部を引き出すと、トレーニングされたニューラルネットワークはこれらのOODサンプルに対して高い信頼性の予測を行う傾向にある。
本稿では,これらの課題を克服するため,Wasserstein を用いたアウト・オブ・ディストリビューション検出(WOOD)手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:35:15Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。