論文の概要: TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation
- arxiv url: http://arxiv.org/abs/2409.12514v4
- Date: Thu, 14 Nov 2024 12:03:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:21:46.357573
- Title: TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation
- Title(参考訳): TinyVLA:ロボットマニピュレーションのための高速かつデータ効率のビジョン・ランゲージ・アクションモデル
- Authors: Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng, Chaomin Shen, Yaxin Peng, Feifei Feng, Jian Tang,
- Abstract要約: VLA(Vision-Language-Action)モデルは、エンド・ツー・エンドの学習プロセスを通じて、視覚運動制御と命令理解において顕著な可能性を示している。
現在のVLAモデルは、推論中に遅くなり、大量のロボットデータに対して広範な事前トレーニングを必要としているため、重大な課題に直面している。
既存のVLAモデルに対して2つのアドバンテージを提供する,TinyVLAと呼ばれる,コンパクトな視覚言語アクションモデルを導入した。
- 参考スコア(独自算出の注目度): 32.406783380729024
- License:
- Abstract: Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes. However, current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data, making real-world deployment difficult. In this paper, we introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models: (1) faster inference speeds, and (2) improved data efficiency, eliminating the need for pre-training stage. Our framework incorporates two essential components to build TinyVLA: (1) initializing the policy backbone with robust, high-speed multimodal models, and (2) integrating a diffusion policy decoder during fine-tuning to enable precise robot actions. We conducted extensive evaluations of TinyVLA in both simulation and on real robots, demonstrating that our approach significantly outperforms the state-of-the-art VLA model, OpenVLA, in terms of speed and data efficiency, while delivering comparable or superior performance. Additionally, TinyVLA exhibits strong generalization capabilities across various dimensions, including language instructions, novel objects, unseen positions, changes in object appearance, background variations, and environmental shifts, often matching or exceeding the performance of OpenVLA. We believe that \methodname offers an interesting perspective on utilizing pre-trained multimodal models for policy learning. Our project is at https://tiny-vla.github.io.
- Abstract(参考訳): VLA(Vision-Language-Action)モデルは、エンド・ツー・エンドの学習プロセスを通じて、視覚運動制御と命令理解において顕著な可能性を示している。
しかしながら、現在のVLAモデルは、推論中に遅くなり、大量のロボットデータに対して広範な事前トレーニングを必要とするため、現実のデプロイメントが困難である、という重大な課題に直面している。
本稿では,既存のVLAモデルに対して2つのアドバンテージを提供する,TinyVLAと呼ばれる,コンパクトな視覚-言語-行動モデル群を紹介する。
本フレームワークは,TinyVLAを構築する上で不可欠な2つのコンポーネントを組み込んでいる。(1) 堅牢で高速なマルチモーダルモデルによるポリシーバックボーンの初期化,(2) 精密なロボット動作を実現するための微調整中に拡散ポリシーデコーダを統合する。
我々はTinyVLAをシミュレーションと実際のロボットの両方で広範囲に評価し、我々のアプローチが性能や性能の面で最先端のVLAモデルであるOpenVLAよりも優れていることを実証した。
さらに、TinyVLAは言語命令、新しいオブジェクト、見えない位置、オブジェクトの外観の変化、背景の変化、環境の変化など、様々な次元にわたる強力な一般化能力を示し、しばしばOpenVLAのパフォーマンスにマッチまたは超えている。
政策学習に事前学習されたマルチモーダルモデルを利用することに関して,‘methodname’は興味深い視点を提供すると考えている。
私たちのプロジェクトはhttps://tiny-vla.github.ioにあります。
関連論文リスト
- Vision Language Models are In-Context Value Learners [89.29486557646624]
本稿では、視覚言語モデル(VLM)に埋め込まれた世界的知識を活用してタスクの進捗を予測する普遍的価値関数推定器である生成価値学習(GVL)を提案する。
ロボットやタスク固有のトレーニングがなければ、GVLは300以上の異なる現実世界のタスクに対して、ゼロショットと数ショットの効果的な値をインコンテキストで予測することができる。
論文 参考訳(メタデータ) (2024-11-07T09:17:50Z) - A Dual Process VLA: Efficient Robotic Manipulation Leveraging VLM [0.26334346517416873]
VLA(Vision-Language-Action)モデルでは、視覚コンテキストと言語コマンドを統合することで、ロボットが複雑なタスクを実行できる。
これを解決するために,デュアルプロセス理論に着想を得た階層型フレームワークであるDual Process VLA(DP-VLA)を提案する。
RoboCasaデータセットの実験結果は、DP-VLAがより高速な推論とより高いタスク成功率を達成することを示した。
論文 参考訳(メタデータ) (2024-10-21T00:36:02Z) - Run-time Observation Interventions Make Vision-Language-Action Models More Visually Robust [9.647148940880381]
視覚言語アクション(VLA)モデルは、大規模なインターネットデータとロボットのデモンストレーションに基づいて訓練され、汎用的なロボットポリシーとして機能する可能性がある。
本稿では,入力画像の領域を動的に識別するリアルタイム介入方式である bring Your Own VLA (BYOVLA) を紹介する。
我々は,BYOVLAが最先端のVLAモデルに対して,邪魔な対象や背景が存在する場合に,その名目上の性能をほぼ維持できることを示す。
論文 参考訳(メタデータ) (2024-10-02T19:29:24Z) - ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models [55.07988373824348]
既存の3つのロボット基礎モデルの視覚的一般化能力について検討する。
本研究は,既存のモデルがドメイン外シナリオに対する堅牢性を示していないことを示す。
モデルマージに基づく段階的なバックボーンリバーサルアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-23T17:47:59Z) - OpenVLA: An Open-Source Vision-Language-Action Model [131.74098076670103]
我々は、970kの現実世界のロボットデモの多様なコレクションに基づいて訓練されたオープンソースのVLAであるOpenVLAを紹介した。
OpenVLAは汎用的な操作の強力な結果を示し、RT-2-X (55B) のようなクローズドモデルよりも16.5%高い絶対的なタスク成功率を示した。
モデルチェックポイント、微調整ノートブック、そしてOpen X-Embodimentデータセット上で大規模にVLAをトレーニングするためのビルトインサポートを備えたPyTorchをリリースしています。
論文 参考訳(メタデータ) (2024-06-13T15:46:55Z) - MetaVL: Transferring In-Context Learning Ability From Language Models to
Vision-Language Models [74.89629463600978]
視覚言語領域では、ほとんどの大規模事前学習された視覚言語モデルは、文脈内学習を行う能力を持っていない。
本稿では,言語領域から視覚領域へコンテキスト内学習能力を移行できるのか,という興味深い仮説を考察する。
論文 参考訳(メタデータ) (2023-06-02T07:21:03Z) - PEVL: Position-enhanced Pre-training and Prompt Tuning for
Vision-language Models [127.17675443137064]
PEVLを導入し、明示的なオブジェクト位置モデリングによる視覚言語モデルの事前学習と迅速なチューニングを促進する。
PEVLは、統一言語モデリングフレームワークにおいて、離散化されたオブジェクトの位置と言語を再構成する。
PEVLは,表現理解や句の接頭など,位置感性のあるタスクに対して,最先端のパフォーマンスを実現することができることを示す。
論文 参考訳(メタデータ) (2022-05-23T10:17:53Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
我々は、視覚言語知識蒸留(VLKD)を通して、テキスト事前学習言語モデル(PLM)を用いた視覚言語事前学習モデルの拡張を提案する。
実験の結果,複数モーダル生成タスクにおいて,視覚的質問応答や画像キャプションなどのゼロショット性能が強いことがわかった。
PLMの本来のテキスト言語理解と生成能力は、VLKDの後に維持される。
論文 参考訳(メタデータ) (2022-03-12T09:33:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。