Is Tokenization Needed for Masked Particle Modelling?
- URL: http://arxiv.org/abs/2409.12589v2
- Date: Tue, 1 Oct 2024 11:40:11 GMT
- Title: Is Tokenization Needed for Masked Particle Modelling?
- Authors: Matthew Leigh, Samuel Klein, François Charton, Tobias Golling, Lukas Heinrich, Michael Kagan, Inês Ochoa, Margarita Osadchy,
- Abstract summary: Masked particle modeling (MPM) is a self-supervised learning scheme for constructing expressive representations of unordered sets.
We improve MPM by addressing inefficiencies in the implementation and incorporating a more powerful decoder.
We show that these new methods outperform the tokenized learning objective from the original MPM on a new test bed for foundation models for jets.
- Score: 8.79008927474707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we significantly enhance masked particle modeling (MPM), a self-supervised learning scheme for constructing highly expressive representations of unordered sets relevant to developing foundation models for high-energy physics. In MPM, a model is trained to recover the missing elements of a set, a learning objective that requires no labels and can be applied directly to experimental data. We achieve significant performance improvements over previous work on MPM by addressing inefficiencies in the implementation and incorporating a more powerful decoder. We compare several pre-training tasks and introduce new reconstruction methods that utilize conditional generative models without data tokenization or discretization. We show that these new methods outperform the tokenized learning objective from the original MPM on a new test bed for foundation models for jets, which includes using a wide variety of downstream tasks relevant to jet physics, such as classification, secondary vertex finding, and track identification.
Related papers
- MERLOT: A Distilled LLM-based Mixture-of-Experts Framework for Scalable Encrypted Traffic Classification [19.476061046309052]
We present a scalable mixture-of-expert (MoE) based refinement of distilled large language model optimized for encrypted traffic classification.
Experiments on 10 datasets show superior or competitive performance over state-of-the-art models.
arXiv Detail & Related papers (2024-11-20T03:01:41Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - NegMerge: Consensual Weight Negation for Strong Machine Unlearning [21.081262106431506]
Machine unlearning aims to selectively remove specific knowledge from a model.
Current methods rely on fine-tuning models on the forget set, generating a task vector, and subtracting it from the original model.
We propose a novel method that leverages all given fine-tuned models rather than selecting a single one.
arXiv Detail & Related papers (2024-10-08T00:50:54Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Masked Particle Modeling on Sets: Towards Self-Supervised High Energy Physics Foundation Models [4.299997052226609]
Masked particle modeling (MPM) is a self-supervised method for learning generic, transferable, and reusable representations on unordered sets of inputs.
We study the efficacy of the method in samples of high energy jets at collider physics experiments.
arXiv Detail & Related papers (2024-01-24T15:46:32Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - RePreM: Representation Pre-training with Masked Model for Reinforcement
Learning [28.63696288537304]
We propose a masked model for pre-training in RL, RePreM, which trains the encoder combined with transformer blocks to predict the masked states or actions in a trajectory.
We show that RePreM scales well with dataset size, dataset quality, and the scale of the encoder, which indicates its potential towards big RL models.
arXiv Detail & Related papers (2023-03-03T02:04:14Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.