NegMerge: Consensual Weight Negation for Strong Machine Unlearning
- URL: http://arxiv.org/abs/2410.05583v1
- Date: Tue, 8 Oct 2024 00:50:54 GMT
- Title: NegMerge: Consensual Weight Negation for Strong Machine Unlearning
- Authors: Hyoseo Kim, Dongyoon Han, Junsuk Choe,
- Abstract summary: Machine unlearning aims to selectively remove specific knowledge from a model.
Current methods rely on fine-tuning models on the forget set, generating a task vector, and subtracting it from the original model.
We propose a novel method that leverages all given fine-tuned models rather than selecting a single one.
- Score: 21.081262106431506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning aims to selectively remove specific knowledge from a model. Current methods, such as task arithmetic, rely on fine-tuning models on the forget set, generating a task vector, and subtracting it from the original model. However, we argue the effectiveness of this approach is highly sensitive to hyperparameter selection, necessitating careful validation to identify the best model among many fine-tuned candidates. In this paper, we propose a novel method that leverages all given fine-tuned models rather than selecting a single one. By constructing task vectors from models trained with varied hyperparameters and merging only the components of the task vectors with consistent signs, we perform unlearning by negating the merged task vector from the original model. Given that existing methods also utilize multiple fine-tuned models, our approach delivers more effective unlearning without incurring additional computational costs. We demonstrate the effectiveness of our method on both vision-language models and standard image classification models, showing improved unlearning performance with minimal degradation on the retain set, outperforming state-of-the-art techniques.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Is Tokenization Needed for Masked Particle Modelling? [8.79008927474707]
Masked particle modeling (MPM) is a self-supervised learning scheme for constructing expressive representations of unordered sets.
We improve MPM by addressing inefficiencies in the implementation and incorporating a more powerful decoder.
We show that these new methods outperform the tokenized learning objective from the original MPM on a new test bed for foundation models for jets.
arXiv Detail & Related papers (2024-09-19T09:12:29Z) - Enabling Small Models for Zero-Shot Classification through Model Label Learning [50.68074833512999]
We introduce a novel paradigm, Model Label Learning (MLL), which bridges the gap between models and their functionalities.
Experiments on seven real-world datasets validate the effectiveness and efficiency of MLL.
arXiv Detail & Related papers (2024-08-21T09:08:26Z) - Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - Exploring Transferability for Randomized Smoothing [37.60675615521106]
We propose a method for pretraining certifiably robust models.
We find that surprisingly strong certified accuracy can be achieved even when finetuning on only clean images.
arXiv Detail & Related papers (2023-12-14T15:08:27Z) - Parameter Efficient Multi-task Model Fusion with Partial Linearization [97.23530944186078]
We propose a novel method to improve multi-task fusion for parameter-efficient fine-tuning techniques.
Our approach partially linearizes only the adapter modules and applies task arithmetic over the linearized adapters.
We demonstrate that our partial linearization technique enables a more effective fusion of multiple tasks into a single model.
arXiv Detail & Related papers (2023-10-07T08:55:54Z) - Dual Student Networks for Data-Free Model Stealing [79.67498803845059]
Two main challenges are estimating gradients of the target model without access to its parameters, and generating a diverse set of training samples.
We propose a Dual Student method where two students are symmetrically trained in order to provide the generator a criterion to generate samples that the two students disagree on.
We show that our new optimization framework provides more accurate gradient estimation of the target model and better accuracies on benchmark classification datasets.
arXiv Detail & Related papers (2023-09-18T18:11:31Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.