論文の概要: Counterfactual Explanations for Clustering Models
- arxiv url: http://arxiv.org/abs/2409.12632v1
- Date: Thu, 19 Sep 2024 10:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:08:12.862084
- Title: Counterfactual Explanations for Clustering Models
- Title(参考訳): クラスタリングモデルの非現実的説明
- Authors: Aurora Spagnol, Kacper Sokol, Pietro Barbiero, Marc Langheinrich, Martin Gjoreski,
- Abstract要約: クラスタリングアルゴリズムは、理解が難しい複雑な最適化プロセスに依存している。
本稿では,クラスタリングアルゴリズムを非現実的文で説明するための,モデルに依存しない新しい手法を提案する。
- 参考スコア(独自算出の注目度): 11.40145394568897
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering algorithms rely on complex optimisation processes that may be difficult to comprehend, especially for individuals who lack technical expertise. While many explainable artificial intelligence techniques exist for supervised machine learning, unsupervised learning -- and clustering in particular -- has been largely neglected. To complicate matters further, the notion of a ``true'' cluster is inherently challenging to define. These facets of unsupervised learning and its explainability make it difficult to foster trust in such methods and curtail their adoption. To address these challenges, we propose a new, model-agnostic technique for explaining clustering algorithms with counterfactual statements. Our approach relies on a novel soft-scoring method that captures the spatial information utilised by clustering models. It builds upon a state-of-the-art Bayesian counterfactual generator for supervised learning to deliver high-quality explanations. We evaluate its performance on five datasets and two clustering algorithms, and demonstrate that introducing soft scores to guide counterfactual search significantly improves the results.
- Abstract(参考訳): クラスタリングアルゴリズムは、理解が難しい複雑な最適化プロセスに依存している。
教師なし機械学習には説明可能な人工知能技術が数多く存在するが、教師なし学習(特にクラスタリング)はほとんど無視されている。
さらに問題を複雑にするために、 'true' クラスタの概念は本質的に定義するのが困難である。
これらの教師なし学習の側面とその説明可能性は、そのような手法への信頼を育み、採用を縮小させることを困難にしている。
これらの課題に対処するために,本研究では,クラスタリングアルゴリズムを対実的ステートメントで説明するための,モデルに依存しない新しい手法を提案する。
提案手法は,クラスタリングモデルを用いて空間情報をキャプチャするソフトスコーリング手法に依存する。
最先端のベイズ製カウンターファクト・ジェネレータをベースとして、教師付き学習で高品質な説明を提供する。
我々は,5つのデータセットと2つのクラスタリングアルゴリズムの性能を評価し,正解探索を導くためのソフトスコアの導入により,結果が大幅に改善されることを実証した。
関連論文リスト
- GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Unsupervised Temporal Action Localization via Self-paced Incremental
Learning [57.55765505856969]
本稿では,クラスタリングとローカライズトレーニングを同時に行うための,自己ペースの漸進学習モデルを提案する。
我々は,2つの段階的なインスタンス学習戦略を設計し,ビデオ擬似ラベルの信頼性を確保する。
論文 参考訳(メタデータ) (2023-12-12T16:00:55Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Seeking the Truth Beyond the Data. An Unsupervised Machine Learning
Approach [0.0]
クラスタリングは、ラベルのない要素/オブジェクトがグループ化される、教師なしの機械学習方法論である。
この記事では、最も広く使われているクラスタリング手法について詳しく説明する。
3つのデータセットに基づいて、これらのアルゴリズムのクラスタリング効率の比較を強調している。
論文 参考訳(メタデータ) (2022-07-14T14:22:36Z) - A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and
Future Directions [48.97008907275482]
クラスタリングは、文献で広く研究されている基本的な機械学習タスクである。
ディープクラスタリング(Deep Clustering)、すなわち表現学習とクラスタリングを共同で最適化する手法が提案され、コミュニティで注目を集めている。
深層クラスタリングの本質的なコンポーネントを要約し、深層クラスタリングと深層クラスタリングの相互作用を設計する方法によって既存の手法を分類する。
論文 参考訳(メタデータ) (2022-06-15T15:05:13Z) - KnAC: an approach for enhancing cluster analysis with background
knowledge and explanations [0.20999222360659603]
我々はKnAC(Knowledge Augmented Clustering)を紹介します。
KnACは任意のクラスタリングアルゴリズムの拡張として機能し、アプローチを堅牢でモデルに依存しないものにすることができる。
論文 参考訳(メタデータ) (2021-12-16T10:13:47Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
表現学習とクラスタリングを1つのパイプラインに初めて統合するフレームワークを提案する。
提案フレームワークは,近年開発された生成モデルを用いて,本質的な特徴を学習する能力を活用している。
実験の結果,提案手法の性能は,最先端の手法よりも優れているか,少なくとも同等であることがわかった。
論文 参考訳(メタデータ) (2021-06-11T04:08:54Z) - Algorithm-Agnostic Explainability for Unsupervised Clustering [19.375627480270627]
提案手法は,グローバル置換率変化 (g2pc) 特徴量と局所摂動率変化 (l2pc) 特徴量である。
低次元の地層合成データセット上で, 5つの一般的なクラスタリングアルゴリズムを説明する手法の有用性を示す。
論文 参考訳(メタデータ) (2021-05-17T17:58:55Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
Semantic Contrastive Learning (SCL) と呼ばれる新しい変種を紹介します。
従来のコントラスト学習とディープクラスタリングの両方の特徴を探求する。
コントラスト学習と深層クラスタリングの強みを統一的なアプローチで増幅することができる。
論文 参考訳(メタデータ) (2021-03-03T20:20:48Z) - Provably Efficient Exploration for Reinforcement Learning Using
Unsupervised Learning [96.78504087416654]
強化学習(RL)問題における効率的な探索に教師なし学習を用い,本パラダイムが有効であるかどうかを考察する。
本稿では,教師なし学習アルゴリズムと非線形表RLアルゴリズムという,2つのコンポーネント上に構築された汎用的なアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-15T19:23:59Z) - EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic
Analysis [7.447122949368314]
ラベルのないデータを扱う手法であるEXPLAIN-ITを導入し、意味のあるクラスタを作成し、エンドユーザのクラスタリング結果の説明を提案する。
暗号化されたトラフィックシナリオ下でのYouTubeビデオ品質分類の問題に対してEXPLAIN-ITを適用し,有望な結果を示す。
論文 参考訳(メタデータ) (2020-03-03T17:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。